Skip to main content

Building diagram editors in Eclipse Theia with GLSP

by Jonas Helming and Maximilian Koegel at March 03, 2021 10:00 AM

Do you want to implement a diagram editor in Eclipse Theia? The Eclipse Graphical Language Server Platform (GLSP) allows you to...

The post Building diagram editors in Eclipse Theia with GLSP appeared first on EclipseSource.


by Jonas Helming and Maximilian Koegel at March 03, 2021 10:00 AM

Why I’m Running for the OSI Board of Directors

by Thabang Mashologu at March 02, 2021 03:56 PM

I’m running for election to the affiliate member seat on the Board of Directors of the Open Source Initiative (OSI), on behalf of the Eclipse Foundation. If you are an OSI affiliate organization, I would appreciate your vote. Here is a little information about why I am running for the position.

 

TL;DR: My main mission would be to help grow OSI awareness and membership engagement through effective marketing, partnerships, and diverse community outreach.

 

First, I would like to see OSI increase its investment in marketing programs and activities to generate awareness of the organization and to connect with new potential supporters. This could be through sponsoring or participating in industry events and conferences, co-creating content and partnering with affiliates to distribute it to increase audience reach, and using social and digital marketing channels to more effectively amplify OSI’s brand and connect to open source community members where they are. It would also be great for OSI to foster collaboration among its affiliate members and social media influencers to improve OSI’s profile.

 

Second, I would like to see OSI do more to advance diversity and inclusion in the open source community. Open source has always been about people with differing opinions and viewpoints coming together to solve problems and innovate. As a member of an underrepresented group in open source, I have a personal stake in creating an inclusive and welcoming environment for everyone. I have repeatedly seen the positive impact that people of different backgrounds and perspectives can have to foster sustainable and healthy open source communities. OSI could be at the forefront of increasing opportunities for people from diverse backgrounds to meaningfully contribute to and effectively participate in open source. Specifically, I would like to see OSI work with affiliate members on programs to educate about the benefits of diversity and inclusion in open source.

 

Third, I would love to see OSI invest more in programs to increase the effective participation of public sector institutions and universities in open source. Many of these entities are in the early days of adopting and releasing software under OSD compliant licenses and OSI should find ways to actively support them on that journey. OSI could start by engaging with publicly-funded open source initiatives and government open source program offices (OSPOs) to explore areas of mutual interest. 

 

Thank you for considering me for the board. You can reach out to me on Twitter via @t_mashologu if you have any questions. For more information on the OSI 2021 Individual and Affiliate Elections, visit this page.


by Thabang Mashologu at March 02, 2021 03:56 PM

Welcome jadeva GmbH to the Jakarta EE Working Group!

by Tanja Obradovic at March 01, 2021 05:08 PM

Our Jakarta EE Working group is growing! Please meet our new member jadeva GmbH!  

We talked to the enthusiastic and engaging duo Stephan Zubke, CTO is one of the initial founders of the company, and Claudia Geiger, CEO of the company,  who provided a bit more information about the company. 

jadeva GmbH is based in Stuttgart, with a team that consists of developers, scrum masters and product owners, following agile development methods. The company itself was founded in 2010 as OZ Solutions and renamed into jadeva UG in 2012, but just going under rebranding  from UG to GmbH, hence you now see jadeva GmbH as the name of the company.

They are strongly interested in the development of Jakarta EE. It is best to quote Claudia explaining their reasons for joining Jakarta EE Working Group.

“Due to our technological focus it was an important step for us to join the community since it is our wish to contribute and support the development of Jakarta EE. We see networking and learning from each other as an important part in the growth of a company. Not only in numbers, but also in knowledge.”

We are looking forward to the collaborations and their contributions to Jakarta EE. 

Welcome jadeva GmbH!


by Tanja Obradovic at March 01, 2021 05:08 PM

The Game of Marriage

by Donald Raab at February 27, 2021 07:11 AM

A poem about poker and marriage

Playing cards I bought on a trip I took to Toronto

Background

My grandmother taught me and my siblings how to play poker and other card games when we were growing up. We’d play lots of different kinds of card games with her and my mom. Her favorite poker game was “Follow the Queen”. I miss my grandmother. She lived into her 90’s, and I have many wonderful memories of her growing up. She lived long enough to see me get married and have two children of my own. I’ve been happily married now for over 25 years. My parents have been happily married for over 50 years. I haven’t been able to see my mom and dad in over a year due to the pandemic. My mom just celebrated her birthday today, so I thought I would publish this poem to share with her.

This is a poem I wrote in 1988 that was published in my high school’s art and literary magazine. My grandmother taught me most of what I knew at the time about playing cards and poker. My parents and grandparents were the role models I had to learn from at the time about marriage. I hope you enjoy the poem, and my selection of pictures to go with it.

The Game of Marriage

Ante 25 dollars,
Do you take this man?
Five card draw,
Do you take this woman?
Deuces are wild.
By commitment you are now bound.

Ten of hearts…
The first months filled with love…
The One-eyed Jack…
Eventually suspicions arise…
Queen of Spades…
Is there someone else?
The Suicide-King…
Life would not be the same…
Ace of Diamonds…
Finally the seven years of strife end.

Check,
All is well…
Call,
The spouses have remained straight…
No one folds.
The marriage has won.

My grandma, my mom, my wife and me

by Donald Raab at February 27, 2021 07:11 AM

The EMF.cloud Model Server

by Jonas Helming and Maximilian Koegel at February 25, 2021 12:31 PM

Do you want to build a web-based tool based on a domain-specific data model? Do you need to connect client-side editors...

The post The EMF.cloud Model Server appeared first on EclipseSource.


by Jonas Helming and Maximilian Koegel at February 25, 2021 12:31 PM

Eclipse Cloud DevTools Community Update - February 2021

by Brian King at February 24, 2021 09:15 PM

About Us

The Eclipse Cloud DevTools (ECD Tools) Working Group is a vendor-neutral open source collaboration that focuses on defining, promoting and implementing tools for cloud-native development.

ECD Tools accelerates the adoption of Cloud IDE and container-based workspace management, through the adoption of standards, engagement with third party developer tool providers, and the promotion of Eclipse projects to cloud developers.

Learn more about the working group by reading about our members, our projects, and our FAQs. For questions about ECD Tools Working Group membership, complete this form.

Latest Developments

Since I last published a community update post in October, we’ve been busy in many areas focused on raising the profile of the Working Group and providing assistance to our projects.

2021 Program Plan

In our 2021 Program Plan, the ECD Tools Working Group has identified the following 4 top-level strategic goals:

  1. Increase project adoption

  2. Identify collaboration opportunities across projects to advance technical initiatives

  3. Establish thought leadership

  4. Increase membership to build a more diverse and robust Working Group

These goals are to be achieved through a series of tactics and programs within each one, accompanied by close collaboration with project leads, contributors, and working group members.

I would like to highlight a few notable updates.

Open VSX

The transition of the Open VSX project to the Eclipse Foundation was completed in December. I previously wrote about the effort involved, and also encourage you to read Jan Köhnlein’s related post from our most recent newsletter.

At the end of January we did lose a small number of extensions due to non-compliance with new publishing and licensing requirements. While these can be reactivated retroactively if the publisher wishes, since then we’ve also seen strong momentum with new extensions being published each day. At the time of writing, there are 880 listings. 

We are seeing strong adoption of Open VSX. With the registry already integrated in Gitpod and VSCodium, new to the community are integrations into Coder and Onivim.

For more information about the important role of Open VSX, please watch for our soon to be released white paper on this topic.

Web Properties

While open-vsx.org is the latest web property under the Eclipse Cloud DevTools umbrella, we have also been cooking up changes at the working group website, ecdtools.eclipse.org.  

Our new Adopters Page is live. We know there are more of you out there, so if you are building on our tools be sure to let us know.

Design updates for open-vsx.org as well as design and content updates for ecdtools.eclipse.org are also in the works.

Theia Blueprint

Theia Blueprint is an exciting new project. Essentially, it is a template application and installer for building desktop Theia-based products. I won’t say anymore for now, as a release is imminent and more details will be available soon!

Embedded SIG

The Theia Blueprint project also has the potential to be one of the foundational pieces for our new Embedded Special Interest Group (SIG). Currently experimental in nature, SIGs are a loose structure allowing member organizations to collaborate around a particular topic or domain within a broader working group. SIGs help bring communities of like-minded organizations together and explore a particular common interest.

I’m delighted that three new organizations are joining the Cloud DevTools Working Group as part of the Embedded SIG, namely Renesas, STMicroelectronics, and Arm. Other members involved as we get started are EclipseSource and Ericsson. It’s never too late to get involved, you can join the SIG at any time.

Read more about the Embedded SIG here.

Events

Events are always part of a successful community strategy, as learning opportunities and to raise awareness of what we do and how our projects are adopted.

EclipseCon in October was great for us. Our Community Day session was well attended, and we had a number of Cloud DevTools sessions throughout the event. Read more about the top ECD Tools sessions. And, keep an eye out for a formal announcement and CFP for EclipseCon 2021, scheduled for October 25-28. 

Cloud Tool Time 

In November 2020 we introduced our first Cloud Tool Time webinar, and have since then enjoyed a growing audience and monthly member contributions to this event series. Check out some of our previous Cloud Tool Time sessions and other ECD Tools video content here  and a complete list of upcoming events here

We welcome ideas about future Cloud Tool Time events and would like to hear from you. Whether you want to present or simply have a suggestion about a topic, use this webinar form to share your ideas.

Cloud Chat

Cloud Chat is a pre-recorded live-stream (aka simu-live) series, hosted on a monthly/bi-monthly basis. The series will be hosted by Jesse Williams from AWS, featuring project leads and contributors. Jesse will interview guests about their projects, cloud-native best practices, host live demos, discuss the project roadmap, and how developers can get involved. Watch for the first episode expected to launch in the coming weeks!

Cloud IDE Day

Keep an eye out for a formal announcement and Call for Papers for our upcoming Cloud IDE Day, scheduled for May 19th, 2021. This event is meant for IDE developers, providers and adopters with an emphasis on tools and best practices for development in the Cloud. 

FOSDEM ‘21

We participated in the recent FOSDEM ‘21 event (February 6-7) with a virtual stand. The event was attended by over 8,000 ‘hackers’ and included multiple Eclipse-related talks. Attendees were able to learn more about projects including Theia, OpenVSX and the ECD Tools Working Group as a whole. A number of great discussions with potential community members via our stand chatroom resulted and 15 leads were collected for future conversations from our ECD Tools Hoodie contest, won by a staff member from Red Hat.

PRAGMA ‘21

We will be participating in and speaking at the upcoming virtual PRAGMA ‘21 event being held March 14-15 and organized by the International Institute of Information Technology (IIIT) in Allahabad, India. PRAGMA is focused on helping student developers learn from and work with more experienced and skilled developers.

Get Involved

The ECD Tools community is growing faster than ever. and there are many ways to stay informed and to contribute.

  • Join the ECD Tools community mailing list (an Eclipse account is required)

  • For instant messaging, we use Slack and you can join at ecd-tools.slack.com.

  • Get social with us on Twitter @ECDTools and on LinkedIn

    • Use #ECDTools, #CloudDevTools, and #EclipseCloudDev hashtags whenever relevant in your posts 

    • Ask your company’s social media manager to follow and retweet from official handles

    • Please share news and updates with your own personal networks

  • Author blog posts that mention ECD Tools or related projects

    • Write a post about your experience as a member of the ECD Tools community

  • Fill out this handy form to share your case studies and success stories with us

  • Volunteer to give a webinar / host a virtual meetup

  • Submit talks to conference CFPs for ECD Tools awareness

Add our community calendar to your calendar to hear about our upcoming events. It’s available in Google Calendar (use the + in the bottom right to add) or ICS format.


by Brian King at February 24, 2021 09:15 PM

A simple auto-updater for Eclipse RCP applications

by Patrick Paulin at February 22, 2021 10:45 PM

One of the most common requests I get from my consulting clients is for an easy way to auto-update deployed Eclipse RCP applications. Particularly in enterprise environments these clients have many deployed installations and often require different feature sets deployed to different user groups.

I’ve found that for most of my clients a very simple auto-updater works well. It does two things.

  1. Compares the versions of installed features with those on a p2 repository and update features with newer versions.
  2. Creates a list of repository features that are not installed locally, and allow those features to be installed.

Because I get asked about this quite a bit, I’ve decided to create a version of the auto-updater available under the Eclipse Public License.

https://github.com/modular-mind/updatemanager

Installing the auto-updater

While you can download the auto-updater source as well as the example usage projects, you can also simply add the feature to your product using this p2 repository.

https://github.com/modular-mind/updatemanager/tree/master/repository

When you run your application, the UpdateManager service will be deployed using Declarative Services and can be accessed as other OSGi services can.

Using the auto-updater in the Application class

For RCP applications using the compatibility layer, auto-updates are often performed in the Application.start() method. In this case, the service needs to be retrieved somehow and in the example code I’m using a ServiceTracker in the plug-in Activator.

	@Override
	public Object start(IApplicationContext context) throws Exception {
		Display display = PlatformUI.createDisplay();
		try {
			UpdateManager updateManager = Activator.getDefault().getUpdateManager();
			if (updateManager.performAutoUpdate()) {
				return IApplication.EXIT_RESTART;
			}
			
			int returnCode = PlatformUI.createAndRunWorkbench(display, new ApplicationWorkbenchAdvisor());
			if (returnCode == PlatformUI.RETURN_RESTART)
				return IApplication.EXIT_RESTART;
			else
				return IApplication.EXIT_OK;
		} finally {
			display.dispose();
		}
	}

Using the auto-updater in a splash handler

Another common location to put auto-update logic is in a splash handler. Again, you would need to access the service through a ServiceTracker or the equivalent.

For applications using the compatibility layer, I’ve found a good pattern is to store whether an update occurred in a preference setting and then do the actual restart in the ApplicationWorkbenchAdvisor class.

Using the auto-updater in a lifecycle manager

It’s also possible to use the auto-updater in a lifecycle handler class. The call should be made in the method with an @PostContextCreate annotation. Unfortunately it’s not possible to access the workbench in this method to restart the application, so you’ll need to add a listener to do that work. Also, in this case you’ll see the workbench window briefly appear before the restart.

On a side note, Tom Schindl has done some work for the e(fx)clipse project that provides restart capability from the lifecycle handler. I’ve added a Bugzilla entry to see if we can reuse this logic more generally.

Customizing the auto-updater

Currently there a few ways to customize the behavior of the auto-updater through Declarative Services. You can provide any of the following services to integrate with the UpdateManager.

  • UpdateManagerRepositoryLocator – Can return a string representing the URI for the remote p2 repository. This allows you to calculate the URI based on factors such as environment (dev, prod, etc.) or other factors. If no locator is provided, the auto-updater looks for a repository system argument passed on start-up.
  • UpdateManagerInstallFilter – Each feature that is discovered in the remote repository and that is not currently installed will be passed to this filter. You can decide which features to install and the default is to not install. One use-case for this is to look up a users privileges to decide whether they can access a particular feature.
  • UpdateManagerLogger – Allows you to hook up whatever logging framework you like. Default is to call sys out.

Wrapping up

This is just an initial release and I’m curious to see if it’s useful. I’d be happy to add features and help you get things set up if needed.


by Patrick Paulin at February 22, 2021 10:45 PM

Vulnerabilities and Responsible Disclosure

February 22, 2021 12:00 AM

The Eclipse Foundation has a policy regarding the resolution and responsible disclosure of identified vulnerabilities. The short version is that this is one of the rare areas where open source transparency and openness ideals may be curtailed for a period of time while a vulnerability is addressed privately; but that all identified vulnerabilities, regardless of whether or not they are fixed, must be disclosed after no more than three months.

February 22, 2021 12:00 AM

Behind the Scene

February 19, 2021 10:00 AM

Welcome to another Sirius Web “Behind the scene”. For this second session, I invited Axel Richard, Consultant at Obeo to present his work on the integration of the Sirius Web Diagramming Component with Cloud IDEs.

Thanks to all our customers for helping in financing this development around Sirius Web. See you next month for another “Behind the scene”!


February 19, 2021 10:00 AM

Release 5.8

February 18, 2021 12:00 AM

New version 5.8 has been released.

Release is of Type A

Features

  • Configurable options for GraalVM Javascript Engine
  • Custom datasource option for Cloud Foundry
  • Build and Releases as GitHub Actions
  • Configurations View
  • 17 UI related improvements
  • Last modified info for the Repository
  • Synchronizers optimizations

Fixes

  • Launchpad fixes
  • Git clone on a default branch different than ‘master’ fix
  • Minor fixes

Statistics

  • 59K+ Users
  • 84K+ Sessions
  • 186 Countries
  • 423 Repositories in DirigibleLabs

Operational

Enjoy!


February 18, 2021 12:00 AM

Improving the symmetry of converter methods in Eclipse Collections

by Donald Raab at February 17, 2021 06:42 AM

Consistency, clarity, and convenience of APIs driven by symmetry

A window to San Francisco Bay

A dedication to API Symmetry

We have driven the evolution of the APIs in Eclipse Collections by responding to and meeting the needs of real use cases encountered in applications in Financial Services and other industries served by developers working in the open source community. We use symmetry to guide the design and implementation of Eclipse Collections. Our collective experience has shown us that symmetry is a good guide to improving the design of our APIs.

Mutable Converter Methods

We have had primarily mutable converter methods in Eclipse Collections since 1.0 of the product.

Mostly mutable converter methods on RichIterable (toString is the one immutable exception)

In addition to the mutable converter methods, we have a converter method named toImmutable which can be used to convert any mutable collection type to its immutable counterpart.

Let’s look at the following example from the Deck of Cards Kata:

private ImmutableList<Card> cards;
private ImmutableListMultimap<Suit, Card> cardsBySuit;
public EclipseCollectionsDeckOfCardsAsList()
{
this.cards = Card.lazyCards().toList().toImmutable();
this.cardsBySuit = this.cards.groupBy(Card::suit);
}

In this example, we need to create an ImmutableList<Card> from a LazyIterable<Card>, which is the cartesian product of Rank and Suit. We first call Card.lazyCards which returns a LazyIterable<Card>. Then we call toList which returns a MutableList<Card> and finally we call toImmutable which returns an ImmutableList<Card>.

For a long time, I have found this two step process of converting from one type to an immutable version of another type in Eclipse Collections a minor but continual annoyance. I’ve also had to explain to developers who use Eclipse Collections that there is no equivalent methods name toImmutableList, toImmutableSet, toImmutableBag, etc.

That will now change in Eclipse Collections 11.0. We will now be able to write the following code.

public EclipseCollectionsDeckOfCardsAsImmutableList()
{
this.cards = Card.lazyCards().toImmutableList();
this.cardsBySuit = this.cards.groupBy(Card::suit);
}

In Eclipse Collections 11.0, we will have toImmutableList, toImmutableSet and toImmutableBag on RichIterable. This is only the beginning of the journey to better symmetry.

Visualizing the Symmetry of Converter Methods

Here is what the Eclipse Collections converter method API will look like in the future.

Future Symmetry of the Converter Method APIs

So far I have added toImmutableList, toImmutableSet and toImmutableBag to the RichIterable interface. The picture above shows us a clear path that we have to follow on the toImmutable side to improve the symmetry of the converter method APIs.

Walking the Walk

I like to say that symmetry is like gravity. When I see missing or dissimilar patterns, I feel the weight of symmetry. It is work that has yet to be done.

This was a quote from my first Medium blog titled Symmetric Sympathy. While it may not be practical to have perfect symmetry in an API as rich and complete as Eclipse Collections, we can continue to improve when we see a lack of clarity, consistency and convenience. This is walking the walk. It is important to meet the needs and expectations of the Eclipse Collections user community. I have seen developers try to call toImmutableList and toImmutableSet on types in Eclipse Collections and find it confusing that there is no equivalent of the to(Mutable) methods for Immutable types. Now their expectations will be met by the APIs they have been looking for.

Stay tuned, the symmetry is continually improving.

Help Wanted

If you’d like to help us on this journey of improvement, please join our open source community of contributors. The following is a great blog from a developer who decided to walk the walk and make his first open-source contributions to Eclipse Collections.

How to Start Contributing to Open Source

This blog is a great chronicle of one developer’s journey to becoming an open-source contributor. It may be an inspiration and reference to other developers as they look to begin or continue their own journeys.

I am a Project Lead and Committer for the Eclipse Collections OSS project at the Eclipse Foundation. Eclipse Collections is open for contributions. If you like the library, you can let us know by starring it on GitHub.

Other Java Articles you may like


Improving the symmetry of converter methods in Eclipse Collections was originally published in Javarevisited on Medium, where people are continuing the conversation by highlighting and responding to this story.


by Donald Raab at February 17, 2021 06:42 AM

Jakarta EE Marketing and Branding Committee Levels-Up with New Members

by Tanja Obradovic at February 10, 2021 06:35 PM

The Eclipse Foundation provides our global community of individuals and organizations with a mature, scalable, and business-friendly environment for open source software collaboration and innovation. The Foundation is home to the Jakarta EE, MicroProfile, Eclipse IDE, and over 350 open source projects.

The Eclipse Foundation is an international not-for-profit association supported by over 300 members who value the Foundation’s unique Working Group governance model, open innovation processes, and community-building events. Members include industry leaders who have embraced open source as a key enabler for business strategy.

The newest members of the Eclipse Foundation’s Jakarta EE Marketing and Branding committee are Otavio Santana and Tetiana Fydorenchyk

Otavio is a software engineer focused on Cloud and Java technology. He has experience mainly in persistence polyglot and high-performance applications in finances, social media, and e-commerce. He is a member of both Expert Groups and Expert Leader in several JSRs and JCP executive committee and he is working on several Apache and Eclipse Foundation projects such as Apache Tamaya, MicroProfile, Jakarta EE, where he is leading the first specification at Jakarta EE with Jakarta NoSQL. A JUG leader and global speaker at JavaOne and Devoxx conferences, Otavio has received recognition for his OSS contributions such as the JCP Outstanding Award, Member of the year and innovative JSR, Duke’s Choice Award, and Java Champion Award, to name a few. He is a developer relations engineer at Platform.sh, a platform built especially for agile development and continuous deployment. 


Otavio says, “I’m pleased to be part of the Jakarta EE Marketing and Branding Committee and help in shaping the strategy for our whole community to promote, share, engage with events about technology and bring even more visibility to the progress we’re making. This community is unique and will be a powerful force for the future of technology development because of the collaborative approach that drives us - where everybody can cooperate, help, and share their knowledge to create a community of success around Jakarta EE

Otavio will also contribute Platform.sh's know-how, which has helped thousands of companies in the cloud adoption globally, the goal is to bring even more maturity and credibility with guides, templates, and cases, indeed, in the Java/Jakarta EE side as well. Furthermore, Platform.sh has a community sponsorship program to help the community and the open-source.

Tetiana Fydorenchyk is Vice President of Marketing at Jelastic, a multi-cloud PaaS provider serving developers and hosting companies around the world. The company twice got Duke’s Choice Award for its contribution to Java enhancement and cloud adoption. Tetiana provides executive leadership and management of Jelastic inbound and out-bound marketing activities worldwide, including: corporate, partner/channel, content and product marketing. She produces articles on tech and business topics related to cloud computing, containers, DevOps, microservices, multi-cloud and others. Also, currently Tetiana is a member of Jakarta EE and Microprofile Working Groups.

Tetiana collaborates with leaders in the Java community and cloud customers on a daily basis. She develops blogs, arranges conferences, webinars, user groups meetups and other events designed to support the Java community in its growth and innovation. She has expertise in content creation, online events, public relations and social media, and looks forward to using these skills on behalf of the Jakarta EE project.

Tetiana says, “I’m thrilled to be part of the Jakarta EE Marketing Committee and leverage my network and marketing communications to help this exciting initiative. The main purpose is to accelerate and sustain the growth of the Jakarta EE community by making a valuable practical contribution such as spreading the word, creating content, participating in the events and collaborating on the future plans.”

 

Please stay up-to-date on the latest news and developments from the dynamic Jakarta EE community on Twitter, Facebook and our LinkedIn Group. 


by Tanja Obradovic at February 10, 2021 06:35 PM

gRPC Code Generation using Bndtools and ECF Remote Services

by Scott Lewis (noreply@blogger.com) at February 06, 2021 09:52 PM

There's a new video tutorial that demonstrates using ECF Remote Services, bndtools, and Eclipse to create an OSGi Remote Service.   

Bndtools has recently added the ability to run code generators as part of a bnd-based project, and with ECF's bndtools workspace template, a single proto3 file added to a project will automatically generate an entire Java remote service API and update/regenerate the API as changes are made to the proto3 file.   No command-line execution of protoc needed.

Further with ECF's project templates, the generated API can be easily implemented and exported as an OSGi Remote Service.

Please watch the video here


by Scott Lewis (noreply@blogger.com) at February 06, 2021 09:52 PM

Support merge functionality for things resources

February 04, 2021 12:00 AM

With the upcoming release of Eclipse Ditto version 2.0.0 it will be possible to merge existing things and their subresources.

Merge functionality for things resources

Ditto now supports merging of existing things and all of its subresources with the provided payload in the request. This can be done by using the HTTP API with the PATCH method, via the Ditto protocol, and also by using the Ditto Java Client. For all three ways there is an example provided in this blog post.

In contrast to the already existing PUT resource, this new functionality allows partial updates on a thing and all its subresources. To get more into detail, from now on it is possible to add or update attributes, and a feature property at the same time, without overwriting the complete thing. Another use case might be to update several feature properties within a single request and let all other parts of the thing untouched.

Ditto uses the JSON Merge Patch semantics to merge the request body with the existing thing. In short, a JSON merge patch resembles the original JSON structure of a thing, and the fields provided in the patch are added, updated, or deleted in the existing thing.

Please be aware that null values have a special meaning when applying a merge patch. A null value indicates the removal of existing fields in the updated thing. For more details and examples, please refer to RFC-7396.

Permissions to merge things and things subresources

In order to execute such a merge operation, the authorized subject needs to have WRITE permission at all resources that should change by the merge. Consequently, if the permission is missing for some part of the merge, the merge is rejected and not applied at all.

Examples

To demonstrate the new merge feature, we assume that the following thing already exists:

{
  "thingId": "com.acme:coffeebrewer",
  "policyId": "com.acme:coffeebrewer-policy",
  "definition": "com.acme:coffeebrewer:0.1.0",
  "attributes": {
    "manufacturer": "ACME demo corp.",
    "location": "Berlin, main floor",
    "serialno": "42",
    "model": "Speaking coffee machine"
  },
  "features": {
    "coffee-brewer": {
      "definition": ["com.acme:coffeebrewer:0.1.0"],
      "properties": {
        "brewed-coffees": 0
      }
    },
    "water-tank": {
      "properties": {
        "configuration": {
          "smartMode": true,
          "brewingTemp": 87,
          "tempToHold": 44,
          "timeoutSeconds": 6000
        },
        "status": {
          "waterAmount": 731,
          "temperature": 44
        }
      }
    }
  }
}

Permissions to execute the example

For this example, the authorized subject needs to have unrestricted WRITE permissions on all affected paths of the JSON merge patch: attributes/manufacturingYear, features/water-tank/properties/configuration/smartMode, and features/water-tank/properties/configuration/tempToHold. The WRITE permission must not be revoked on any level further down the hierarchy. Consequently, it is also sufficient for the authorized subject to have unrestricted WRITE permission at root level or unrestricted WRITE permission at /attributes and /features etc.

The following subparts will show how to use the merge feature via the HTTP API, the Ditto protocol and the Ditto Java Client.

Merge via HTTP API

An existing thing can be merged via the HTTP API using the PATCH method with the following request body. Notice that this request will add the “manufacturingYear” to the attributes, update the “tempToHold” to 50 and delete the “smartMode” key from the feature property “water-tank”.

The Content-Type header for this request must be application/merge-patch+json.

PATCH /things/com.acme:coffeebrewer

{
  "attributes": {
    "manufacturingYear": "2020"
  },
  "features": {
    "water-tank": {
      "properties": {
        "configuration": {
          "smartMode": null,
          "tempToHold": 50
        }
      }
    }
  }
}

After the request was successfully performed the thing will look like this:

{
  "thingId": "com.acme:coffeebrewer",
  "policyId": "com.acme:coffeebrewer-policy",
  "definition": "com.acme:coffeebrewer:0.1.0",
  "attributes": {
    "manufacturer": "ACME demo corp.",
    "manufacturingYear": "2020",
    "location": "Berlin, main floor",
    "serialno": "42",
    "model": "Speaking coffee machine"
  },
  "features": {
    "coffee-brewer": {
      "definition": ["com.acme:coffeebrewer:0.1.0"],
      "properties": {
        "brewed-coffees": 0
      }
    },
    "water-tank": {
      "properties": {
        "configuration": {
          "brewingTemp": 87,
          "tempToHold": 50,
          "timeoutSeconds": 6000
        },
        "status": {
          "waterAmount": 731,
          "temperature": 44
        }
      }
    }
  }
}

It is also possible to apply the PATCH method to all subresources of a thing, e.g. merging only the attributes of a thing.
Check out the newly added PATCH resources in our HTTP API.

Merge via Ditto protocol

It is also possible to merge the existing thing via the Ditto protocol. Applying the following Ditto merge command to the existing thing will lead to the same result as in the above HTTP example.

{
  "topic": "com.acme/coffeebrewer/things/twin/commands/merge",
  "headers": {
    "content-type": "application/vnd.eclipse.ditto+json"
  },
  "path": "/",
  "value": {
    "thingId": "com.acme:coffeebrewer",
    "attributes": {
      "manufacturingYear": "2020"
    },
    "features": {
      "water-tank": {
        "properties": {
          "configuration": {
            "smartMode": null,
            "tempToHold": 50
          }
        }
      }
    }
  }
}

Another Ditto protocol example to merge a feature property:

{
  "topic": "com.acme/coffeebrewer/things/twin/commands/merge",
  "headers": {
    "content-type": "application/vnd.eclipse.ditto+json"
  },
  "path": "/features/coffee-brewer/properties/brewed-coffees",
  "value": 42
}

Using the ditto-client to merge things

The merge functionality is also supported via the Ditto Java Client with the upcoming (Ditto Java Client version 2.0.0).

Example for merging a thing with the Ditto Java Client:

final String THING_ID = "com.acme:coffeebrewer";
final String FEATURE_ID = "water-tank";
final JsonPointer ATTRIBUTE_KEY = JsonFactory.newPointer("manufacturingYear");
final String ATTRIBUTE_VALUE = "2020";
final Feature FEATURE = ThingsModelFactory.newFeatureBuilder()
        .withId(FEATURE_ID)
        .properties(ThingsModelFactory.newFeaturePropertiesBuilder()
                        .set("smartMode", false)
                        .set("tempToHold", 50)
                        .build())
        .build();

final Thing THING = ThingsModelFactory.newThingBuilder()
        .setId(THING_ID)
        .setAttribute(ATTRIBUTE_KEY_NEW, JsonFactory.newValue(ATTRIBUTE_VALUE))
        .setFeature(FEATURE)
        .build();

// initialize the ditto-client
final DittoClient dittoClient = ... ;

dittoClient.twin().merge(THING_ID, THING)
        .whenComplete(((adaptable, throwable) -> {
            if (throwable != null) {
                LOGGER.error("Received error while sending MergeThing: '{}' ", throwable.toString());
            } else {
                LOGGER.info("Received response for MergeThing: '{}'", adaptable);
            }
        }));

After running this code snippet, the existing thing should look like the above result for the HTTP example.

More examples for merging an attribute, all attributes and a feature property via Ditto Java Client.

// initialize the ditto-client
final DittoClient dittoClient = ... ;

    // merge attribute
    dittoClient.twin()
        .forId("com.acme:coffeebrewer")
        .mergeAttribute("manufacturingYear", "2021")
        .whenComplete(...);
        
    // merge attributes
    dittoClient.twin()
        .forId("com.acme:coffeebrewer")
        .mergeAttributes(JsonObject.newBuilder().set("manufacturingYear", "2021").build())
        .whenComplete(...);
    
    // merge feature property
    dittoClient.twin()
        .forFeature("com.acme:coffeebrewer", "water-tank")
        .mergeProperty("configuration/smartMode", false)
        .whenComplete(...);

Merge events

In this section we want to cover the new ThingMerged event which will be emitted after successfully applying an MergeThing command. For every HTTP request or Ditto protocol message which performs a merge operation on a thing there will be sent out exactly one ThingMerged event. This event contains the path and the value of the merge operation. The path describes on which level of the thing the value was merged.

Merge event example

Let’s assume we want to patch/merge multiple feature properties at once. PATCH /things/com.acme:coffeebrewer/features

{
  "coffee-brewer": {
    "properties": {
      "brewed-coffees": 10
    }
  },
  "water-tank": {
    "properties": {
      "configuration": {
        "smartMode": null,
        "tempToHold": 30
      }
    }
  }
}

The following ThingMerged event is emitted:

{
  "topic": "com.acme/coffeebrewer/things/twin/events/merged",
  "headers": {
    "content-type": "application/merge-patch+json"
  },
  "path": "/features",
  "value": {
    "coffee-brewer": {
      "properties": {
        "brewed-coffees": 10
      }
    },
    "water-tank": {
      "properties": {
        "configuration": {
          "smartMode": null,
          "tempToHold": 30
        }
      }
    }
  },
  "revision": 42,
  "timestamp": "2021-02-04T09:42:39Z"
}

Feedback?

Please get in touch if you have feedback or questions towards this new functionality.



Ditto


The Eclipse Ditto team


February 04, 2021 12:00 AM

Why Vendor Neutrality is important

by Denis Roy at February 03, 2021 06:32 PM

We're seeing a trend of free (as in beer) resources being discontinued, or altered, with very little time provided to allow projects to react. This causes pain for OSS projects that use and depend on these services. The trend is certainly not new, and although there's certainly a case for the you-get-what-you-pay-for mantra, it's clear that relying on a single-vendor, third-party "free" resource is not without its risks.

Two recent cases come to mind: 

Dockerhub pull rate limits. With about 2 months of notice, projects around the globe scrambled to fix release engineering processes to accommodate the upcoming limits.

JFrog terminating BinTray and others. With just under three months to react, projects who depend on these services need to find a new home for their binary distributions.

When relying on single-vendor services, or single-vendor open-source projects, or single-vendor anything for that matter, your assurance that you're not relying on a ticking time bomb is nil. At the Eclipse Foundation, we don't depend on a single vendor. In fact, we shy away from solutions that include the words Proprietary, Vendor, Closed and Licensed.  A quick search for "eclipse vendor neutral" will provide dozens of examples.

The Eclipse Foundation does rely on some vendor products - GitLab and GitHub, for instance. We do need to strike a logical and reasonable balance between Vendor Neutrality and Ease of Use. We do, however, ensure two things:

The underlying data model is Open. In both those examples, the data is Git, and Git is not proprietary technology.

That we have a Plan B, should the vendor suddely change the playing field. We actively back up Eclipse project repositories that are on GitHub. The backup is a plain git clone.

Vendor Neutrality, along with those two strategies for dealing with vendor products and services, allow the Foundation to ensure project services are maintained with minimal risk or potential disruption from a single third party.


by Denis Roy at February 03, 2021 06:32 PM

Eclipse Foundation is a CVE Numbering Authority

February 01, 2021 12:00 AM

The Eclipse Foundation is a Common Vulnerabilities and Exposures (CVE) Numbering Authority. Eclipse project committers can use the tools that best suit their needs to remediate their vulnerability, provided that–when disclosed–related issues are tracked via the official (open and transparent) project issue tracker. To the extent possible, tools used to remediate a vulnerability must be vendor neutral; that is, all project committers should be able to participate in the remediation process.

February 01, 2021 12:00 AM

Release 5.7

January 31, 2021 12:00 AM

New version 5.7 has been released.

Release is of Type A

Features

Fixes

  • Case Sensitive support for PostgreSQL fixes
  • Case Sensitive support for complex expressions fixes
  • Update Apache CXF to 3.4.1 in Dirigible 3.2.X
  • SAP Cloud Foundry - Add support for PostgreSQL hyperscaler service instance
  • Minor fixes

Statistics

  • 58K+ Users
  • 83K+ Sessions
  • 186 Countries
  • 415 Repositories in DirigibleLabs

Operational

Enjoy!


January 31, 2021 12:00 AM

Eclipse RCP and REST – Updated start levels for newest Jersey Client release

by Patrick Paulin at January 27, 2021 08:33 PM

For those of you who have been working with the ECF Remote Services JAX-RS Jersey Client, I hope you’ve been finding it useful. Of course, feedback is always appreciated!

If you’re wondering what this client is all about, here are some links to my previous posts:

Updating the start levels

This post concerns a minor detail (well, minor until you spend a few hours debugging it…) that you’ll run into in the latest version of the Jersey client (1.14.4).

In the past, only two plug-ins needed to be auto-started:

org.eclipse.ecf.osgi.services.distribution
org.glassfish.jersey.core.jersey-common

Because of a change made in the most recent release of the client (1.14.4) you’ll need to auto-start an addition plug-in:

org.eclipse.ecf.provider.jersey.client

So your product configuration Start Levels section should look something like this:

The SpaceX client code has been updated to include the new configuration and can be found here:

https://github.com/modular-mind/spacex-client

And as always, if you need any helping working with the Jersey Client just let me know 🙂


by Patrick Paulin at January 27, 2021 08:33 PM

Behind the Scene

January 27, 2021 10:00 AM

At the end of last year Obeo open sourced a new project at the Eclipse Foundation : Sirius Web. Sirius web is a framework to easily create and deploy modeling studios to the web.

Sirius web is evolving a lot and we would like to share with the community these on-going enhancements.

I am pleased to introduce a new regular series of videos: “Behind the scene of Sirius Web”. The goal is to show you in 1-2 minutes each month what we are working on in the Sirius Web project. For this first session, I invited Stéphane Begaudeau, Software Architect of Sirius Web to present his work on the Diagramming Component that aims at making this component easier to reuse in any web environment.

Thanks to all our customers for helping in financing this development around Sirius Web. See you next month for another “Behind the scene”!


January 27, 2021 10:00 AM

OSGi and javax.inject

January 26, 2021 11:00 PM

An OSGi bundle that exports the javax.inject package.

Since a couple of years, the Eclipse platform jars are published on maven central with metadata that allows the consumption in a traditional maven project (no Eclipse Tycho required).

This article is my feedback after having experimented with PDE (the Plug-in Development Environment project).

The problem

The goal is to compile and execute code that requires this OSGi bundle from maven-central:

<dependency>
  <groupId>org.eclipse.pde</groupId>
  <artifactId>org.eclipse.pde.core</artifactId>
  <version>3.13.200</version>
</dependency>

I am using a regular maven project (with the bnd plugins to manage the OSGi related tasks). I do not have Eclipse Tycho, so maven do not have access to any P2 Update Site.

Amongst all dependencies of PDE, there is org.eclipse.e4.core.contexts and org.eclipse.e4.core.services. Those two bundles requires:

Import-Package: javax.inject;version="1.0.0",

Source: here and here.

So we need a bundle exporting this package, otherwise the requirements are not fulfilled and I get this error:

[ERROR] Resolution failed. Capabilities satisfying the following requirements could not be found:
    [<<INITIAL>>]
      ⇒ osgi.identity: (osgi.identity=org.eclipse.pde.core)
          ⇒ [org.eclipse.pde.core version=3.13.200.v20191202-2135]
              ⇒ osgi.wiring.bundle: (&(osgi.wiring.bundle=org.eclipse.e4.core.services)(bundle-version>=2.0.0)(!(bundle-version>=3.0.0)))
                  ⇒ [org.eclipse.e4.core.services version=2.2.100.v20191122-2104]
                      ⇒ osgi.wiring.package: (&(osgi.wiring.package=javax.inject)(version>=1.0.0))
    [org.eclipse.e4.core.contexts version=1.8.300.v20191017-1404]
      ⇒ osgi.wiring.package: (&(osgi.wiring.package=javax.inject)(version>=1.0.0))

In the P2 world

The bundle javax.inject version 1.0.0 is available in the Eclipse Orbit repositories.

In the maven world

The official dependency

The dependency used by most of the other libraries:

<dependency>
  <groupId>javax.inject</groupId>
  <artifactId>javax.inject</artifactId>
  <version>1</version>
</dependency>

This library does not contain any OSGi metadata in the published MANIFEST.MF.

See the corresponding open issue.

Tom Schindl’s solution

The jar from Eclipse Orbit is available at:

<dependency>
  <groupId>at.bestsolution.efxclipse.eclipse</groupId>
  <artifactId>javax.inject</artifactId>
  <version>1.0.0</version>
</dependency>

But this is not on maven central. You will need to add following repository to your pom.xml:

<repositories>
  <repository>
    <id>bestsolution</id>
    <url>http://maven.bestsolution.at/efxclipse-releases/</url>
  </repository>
</repositories>

On maven central

This question on stackoverflow gives some inputs and suggests:

From the Apache ServiceMix project:

<dependency>
  <groupId>org.apache.servicemix.bundles</groupId>
  <artifactId>org.apache.servicemix.bundles.javax-inject</artifactId>
  <version>1_3</version>
</dependency>

From the GlassFish project.

<dependency>
  <groupId>org.glassfish.hk2.external</groupId>
  <artifactId>javax.inject</artifactId>
  <version>2.5.0-b62</version>
</dependency>

After analyzing other candidates in list where artifactId == "javax.inject", there is also this one from the Lucee project:

<dependency>
  <groupId>org.lucee</groupId>
  <artifactId>javax.inject</artifactId>
  <version>1.0.0</version>
</dependency>

And on twitter Raymond Augé suggested the Apache geronimo project.

<dependency>
  <groupId>org.apache.geronimo.specs</groupId>
  <artifactId>geronimo-atinject_1.0_spec</artifactId>
  <version>1.2</version>
</dependency>

Make your choice.


January 26, 2021 11:00 PM

JBoss Tools and Red Hat CodeReady Studio for Eclipse 2020-09

by jeffmaury at January 26, 2021 08:23 AM

JBoss Tools 4.18.0 and Red Hat CodeReady Studio 12.18 for Eclipse 2020-09 are here waiting for you. Check it out!

crstudio12

Installation

Red Hat CodeReady Studio comes with everything pre-bundled in its installer. Simply download it from our Red Hat CodeReady product page and run it like this:

java -jar codereadystudio-<installername>.jar

JBoss Tools or Bring-Your-Own-Eclipse (BYOE) CodeReady Studio require a bit more:

This release requires at least Eclipse 4.17 (2020-09) but we recommend using the latest Eclipse 4.17 2020-09 JEE Bundle since then you get most of the dependencies preinstalled.

Java11 is now required to run Red Hat Developer Studio or JBoss Tools (this is a requirement from Eclipse 4.17). So make sure to select a Java11 JDK in the installer. You can still work with pre-Java11 JDK/JRE and projects in the tool.

Once you have installed Eclipse, you can either find us on the Eclipse Marketplace under "JBoss Tools" or "Red Hat CodeReady Studio".

For JBoss Tools, you can also use our update site directly.

http://download.jboss.org/jbosstools/photon/stable/updates/

What is new?

Our main focus for this release was an improved tooling for the Quarkus framework, improvements for container based development and bug fixing.

OpenShift

Devfile based deployments

The Application Explorer view is now based on odo 2.x, which allows deployments to be based on devfile (developer oriented manifest file). The components from the default odo registry are listed with legacy S2I components:

devfile

It is also now possible to bootstrap from an empty project as the components from the registry may expose starter projects (sample code that will initialize your empty project).

devfile1

Quarkus

Support for codestarts in New Quarkus project wizard

code.quarkus.io has added a new option codestart that allows extension that support this new feature to contribute sample code in the generated project. It is enabled by default and is accessible from the second step in the wizard:

quarkus30

Server Tools

Wildfly 22 Server Adapter

A server adapter has been added to work with Wildfly 22.

Hibernate Tools

Hibernate Runtime Provider Updates

A number of additions and updates have been performed on the available Hibernate runtime providers.

Runtime Provider Updates

The Hibernate 5.4 runtime provider now incorporates Hibernate Core version 5.4.27.Final and Hibernate Tools version 5.4.27.Final.

The Hibernate 5.3 runtime provider now incorporates Hibernate Core version 5.3.20.Final and Hibernate Tools version 5.3.20.Final.

And more…​

You can find more noteworthy updates in on this page.

What is next?

Having JBoss Tools 4.18.0 and Red Hat CodeReady Studio 12.18 out we are already working on the next release.

Enjoy!

Jeff Maury


by jeffmaury at January 26, 2021 08:23 AM

Policy actions: token based subject activation

January 22, 2021 12:00 AM

The upcoming version of Eclipse Ditto 2.0.0 will be enhanced with the ability to alter policies based on policy actions.

Policy actions

This new concept of Policy actions allows upfront defined modifications to policies without the need for the one invoking the action to have “WRITE” permissions granted on the policy.

Token based activation of subject

Together with the concept of actions, a first action named activateTokenIntegration is added.
This action

When all the conditions were met for a policy entry, the action will inject a new subject into the matched policy entry which by default (the pattern is configurable) is the following. This syntax uses placeholders in order to extract information from the authenticated JWT and the policy entry:


integration:{{policy-entry:label}}:{{jwt:aud}}

The value of the injected subject will contain the expiry timestamp copied from the JWT "exp" (the expiration time of the token) claim.

Example use case

Assuming that you have configured a custom OpenID Connect provider some-openid-connect-provider as documented in the installation/operation guide:

ditto.gateway.authentication {
  oauth {
    openid-connect-issuers = {
      some-openid-connect-provider = "https://some-openid-connect-provider.com"
    }
  }
}

Let’s describe our scenario:

  • It is required to enable that a Ditto connection (e.g. an HTTP connection invoking an HTTP webhook) shall receive events whenever the temperature of a twin is modified
  • For security reasons however, the webhook shall not receive events longer than the expiration time of the JWT which was used in order to activate the webhook
  • The webhook can be extended by invoking the action again before the “expiry” time was reached

The underlying policy shall be the following one:

{
  "policyId": "my.namespace:policy-a",
  "entries": {
    "owner": {
      "subjects": {
        "some-openid-connect-provider:some-admin-id": {
          "type": "authenticated via OpenID connect provider <some-openid-connect-provider>"
        }
      },
      "resources": {
        "thing:/": {
          "grant": ["READ", "WRITE"],
          "revoke": []
        },
        "policy:/": {
          "grant": ["READ", "WRITE"],
          "revoke": []
        }
      }
    },
    "temperature-observer": {
      "subjects": {
        "some-openid-connect-provider:some-user-id": {
          "type": "authenticated via OpenID connect provider <some-openid-connect-provider>"
        }
      },
      "resources": {
        "thing:/features/temperature": {
          "grant": ["READ"],
          "revoke": []
        },
        "policy:/entries/temperature-observer/actions/activateTokenIntegration": {
          "grant": ["EXECUTE"],
          "revoke": []
        }
      }
    }
  }
}

The policy entry "temperature-observer" above describes that:

  • the user “some-user-id” may READ the "temperature" feature of things using this policy
  • is allowed to EXECUTE the activateTokenIntegration action in order to inject a subject derived from his provided JWT

Let’s assume that the authenticated JWT used for executing the action contained the following claims:

{
  "iss": "https://some-openid-connect-provider.com",
  "sub": "some-user-id",
  "exp": 1622802633,
  "aud": "some-specific-audience-0815"
}

The “exp” field contains the token expiry timestamp (seconds since epoch) and resolves to: Friday, June 4, 2021 10:30:33 AM.

Once the HTTP API POST /api/2/policies/{policyId}/entries/{label}/actions/activateTokenIntegration, with policyId=my.namespace:policy-a and label=temperature-observer,
is invoked (without any payload), a new subject will be injected when the described prerequisites were enforced successfully.

As a simplification, all possible policy entries may be injected with the subject by invoking the top level action
POST /api/2/policies/{policyId}/actions/activateTokenIntegration, with policyId=my.namespace:policy-a.

The value of the injected subject will contain the expiration timestamp from the JWT, so the injected policy subject integration:temperature-observer:some-specific-audience-0815 will result in a modified policy:

{
  "policyId": "my.namespace:policy-a",
  "entries": {
    "owner": { // unchanged ... },
    "temperature-observer": {
      "subjects": {
        "some-openid-connect-provider:some-user-id": {
          "type": "authenticated via OpenID connect provider <some-openid-connect-provider>"
        },
        "integration:temperature-observer:some-specific-audience-0815": {
          "type": "added via action <activateTokenIntegration>",
          "expiry": "2021-06-04T10:30:33Z"
        }
      },
      "resources": {
        "thing:/features/temperature": {
          "grant": ["READ"],
          "revoke": []
        },
        "policy:/entries/temperature-observer/actions/activateTokenIntegration": {
          "grant": ["EXECUTE"],
          "revoke": []
        }
      }
    }
  }
}

When we now have a managed HTTP connection which configures the authorizationContext to include the subject integration:temperature-observer:some-specific-audience-0815 for a connection target, this connection is allowed to publish changes to the temperature of all things using the above policy until the "expiry" timestamp was reached.
Afterwards, publishing changes automatically stops, unless the action is invoked again with a JWT having a longer “exp” time prolonging the injected policy subject.

Feedback?

Please get in touch if you have feedback or questions towards this new token based subject activation for policies.
Or do you have other use cases in mind you might be able to solve with this feature? Please let us know.



Ditto


The Eclipse Ditto team


January 22, 2021 12:00 AM

Cloud Native Predictions for 2021 and Beyond

by Chris Aniszczyk at January 19, 2021 04:08 PM

I hope everyone had a wonderful holiday break as the first couple weeks of January 2021 have been pretty wild, from insurrections to new COVID strains. In cloud native land, the CNCF recently released its annual report on all the work we accomplished last year. I recommend everyone take an opportunity to go through the report, we had a solid year given the wild pandemic circumstances.

https://twitter.com/CloudNativeFdn/status/1343914259177222145

As part of my job, I have a unique and privileged vantage point of cloud native trends given to all the member companies and developers I work with, so I figured I’d share my thoughts of where things will be going in 2021 and beyond:

Cloud Native IDEs

As a person who has spent a decent portion of his career working on developer tools inside the Eclipse Foundation, I am nothing but thrilled with the recent progress of the state of the art. The future will hold that the development lifecycle (code, build, debug) will happen mostly in the cloud versus your local Emacs or VSCode setup. You will end up getting a full dev environment setup for every pull request, pre-configured and connected to their own deployment to aid your development and debugging needs. A concrete example of this technology today is enabled via GitHub Codespaces and GitPod. While GitHub Codespaces is still in beta, you can try this experience live today with GitPod, using Prometheus as an example. In a minute or so, you have a completely live development environment with an editor and preview environment. The wild thing is that this development environment (workspace) is described in code and shareable with other developers on your team like any other code artifact.

In the end, I expect to see incredible innovation in the cloud native IDE space over the next year, especially as GitHub Codespaces enters out of beta and becomes more widely available so developers can experience this new concept and fall in love.

Kubernetes on the Edge

Kubernetes was born through usage across massive data centers but Kubernetes will evolve just like Linux did for new environments. What happened with Linux was that end users eventually stretched the kernel to support a variety of new deployment scenarios from mobile, embedded and more. I strongly believe Kubernetes will go through a similar evolution and we are already witnessing Telcos (and startups) explore Kubernetes as an edge platform through transforming VNFs into Cloud Native Network Functions (CNFs) along with open source projects like k3s, KubeEdge, k0s, LFEdge, Eclipse ioFog and more. The forces driving hyperscaler clouds to support telcos and the edge, combined with the ability to reuse cloud native software and build upon already a large ecosystem will cement Kubernetes as a dominant platform in edge computing over the next few years.

Cloud Native + Wasm

Web Assembly (Wasm) is a technology that is nascent but I expect it to become a growing utility and workload in the cloud native ecosystem especially as WASI matures and as Kubernetes is used more as an edge orchestrator as described previously. One use case is powering an extension mechanism, like what Envoy does with filters and LuaJIT. Instead of dealing with Lua directly, you can work with a smaller optimized runtime that supports a variety of programming languages. The Envoy project is currently in its journey in adopting Wasm and I expect a similar pattern to follow for any environment that scripting languages are a popular extension mechanism to be wholesale replaced by Wasm in the future.

On the Kubernetes front, there are projects like Krustlet from Microsoft that are exploring how a WASI-based runtime could be supported in Kubernetes. This shouldn’t be too surprising as Kubernetes is already being extended via CRDs and other mechanisms to run different types of workloads like VMs (KubeVirt) and more.

Also, if you’re new to Wasm, I recommend this new intro course from the Linux Foundation that goes over the space, along with the excellection documentation 

Rise of FinOps (CFM)

The coronavirus outbreak has accelerated the shift to cloud native. At least half of companies are accelerating their cloud plans amid the crisis… nearly 60% of respondents said cloud usage would exceed prior plans owing to the COVID-19 pandemic (State of the Cloud Report 2020). On top of that, Cloud Financial Management (or FinOps) is a growing issue and concern for many companies and honestly comes up in about half of my discussions the last six months with companies navigating their cloud native journey. You can also argue that cloud providers aren’t incentivized to make cloud financial management easier as that would make it easier for customers to spend less, however, the true pain is lack of open source innovation and standardization around cloud financial management in my opinion (all the clouds do cost management differently). In the CNCF context, there aren’t many open source projects trying to make FinOps easier, there is the KubeCost project but it’s fairly early days.

Also, the Linux Foundation recently launched the “FinOps Foundation” to help innovation in this space, they have some great introductory materials in this space. I expect to see a lot more open source projects and specifications in the FinOps space in the coming years.

More Rust in Cloud Native

Rust is still a young and niche programming language, especially if you look at programming language rankings from Redmonk as an example. However, my feeling is that you will see Rust in more cloud native projects over the coming year given that there are already a handful of CNCF projects taking advantage of Rust to it popping up in interesting infrastructure projects like the microvm Firecracker. While CNCF currently has a super majority of projects written in Golang, I expect Rust-based projects to be on par with Go-based ones in a couple of years as the Rust community matures.

GitOps + CD/PD Grows Significantly

GitOps is an operating model for cloud native technologies, providing a set of best practices that unify deployment, management and monitoring for applications (originally coined by Alexis Richardson from Weaveworks fame). The most important aspect of GitOps is describing the desired system state versioned in Git via a declaration fashion, that essentially enables a complex set of system changes to be applied correctly and then verified (via a nice audit log enabled via Git and other tools). From a pragmatic standpoint, GitOps improves developer experience and with the growth of projects like Argo, GitLab, Flux and so on, I expect GitOps tools to hit the enterprise more this year. If you look at the data from say GitLab, GitOps is still a nascent practice where the majority of companies haven’t explored it yet but as more companies move to adopt cloud native software at scale, GitOps will naturally follow in my opinion. If you’re interested in learning more about this space, I recommend checking out the newly formed GitOps Working Group in CNCF.

Service Catalogs 2.0: Cloud Native Developer Dashboards

The concept of a service catalog isn’t a new thing, for some of us older folks that grew up in the ITIL era you may remember things such as CMDBs (the horror). However, with the rise of microservices and cloud native development, the ability to catalog services and index a variety of real time service metadata is paramount to drive developer automation. This can include using a service catalog to understand ownership to handle incident management, manage SLOs and more. 

In the future, you will see a trend towards developer dashboards that are not only a service catalog, but provide an ability to extend the dashboard through a variety of automation features all in one place. The canonical open source examples of this are Backstage and Clutch from Lyft, however, any company with a fairly modern cloud native deployment tends to have a platform infrastructure team that has tried to build something similar. As the open source developer dashboards mature with a large plug-in ecosystem, you’ll see accelerated adoption by platform engineering teams everywhere.

Cross Cloud Becomes More Real

Kubernetes and the cloud native movement have demonstrated that cloud native and multi cloud approaches are possible in production environments, the data is clear that “93% of enterprises have a strategy to use multiple providers like Microsoft Azure, Amazon Web Services, and Google Cloud” (State of the Cloud Report 2020). The fact that Kubernetes has matured over the years along with the cloud market, will hopefully unlock programmatic cross-cloud managed services. A concrete example of this approach is embodied in the Crossplane project that provides an open source cross cloud control plane taking advantage of the Kubernetes API extensibility to enable cross cloud workload management (see “GitLab Deploys the Crossplane Control Plane to Offer Multicloud Deployments”).

Mainstream eBPF

eBPF allows you to run programs in the Linux Kernel without changing the kernel code or loading a module, you can think of it as a sandboxed extension mechanism. eBPF has allowed a new generation of software to extend the behavior of the Linux kernel to support a variety of different things from improved networking, monitoring and security. The downside of eBPF historically is that it requires a modern kernel version to take advantage of it and for a long time, that just wasn’t a realistic option for many companies. However, things are changing and even newer versions of RHEL finally support eBPF so you will see more projects take advantage. If you look at the latest container report from Sysdig, you can see the adoption of Falco rising recently which although the report may be a bit biased from Sysdig, it is reflected in production usage. So stay tuned and look for more eBPF based projects in the future!

Finally, Happy 2021!

I have a few more predictions and trends to share especially around end user driven open source, service mesh cannibalization/standardization, Prometheus+OTel, KYC for securing the software supply chain and more but I’ll save that for more detailed posts, nine predictions are enough to kick off the new year! Anyways, thanks for reading and I hope to see everyone at KubeCon + CloudNativeCon EU in May 2021, registration is open!


by Chris Aniszczyk at January 19, 2021 04:08 PM

DSL Forge, dead or (still) alive?

by alajmi at January 19, 2021 02:22 PM

It has been a long time since the last post I’ve published on the DSL Forge blog. As the initial release back in 2014 and the “hot” context of that time, water has flowed under the bridges. The last couple of years, a lot of effort has been spent on the Coding Park platform, a commercial product based on DSL Forge. Unfortunately, not all the developments made since then have been integrated into the open-source repository.

Anyway, I’ve finally managed to have some time to clean the repository and fix some bugs, hence it’s up-to-date now, and still available under the EPL licence on GitHub.

There are several reasons why the project has not progressed the way we wanted at the beginning, let’s take a step back and think about what happened.

Lack of ambition

One of the reasons why the adoption of cloud-based tools has not taken off is the standstill, and sometimes the lack of ambition, of top managers in big industry corporations who traditionnally use Eclipse technologies to build their internal products. Many companies have a huge legacy desktop applications built on top of Elipse RCP. Despite the acceleration that was put the last 5 years to encourage organizations to move to the web/cloud, eventually, very few have taken action.

No standard cloud IDE

Another reason is the absence of a “standard” platform which is unanimously supported to build new tools on top of it. Of course, there are some nice cloud IDEs flourishing under the Eclipse foundation umbrella, such as Dirigible (SAP), Theia (TypeFox), or Che (Codenvy then Red Hat), but it’s still unclear for customers which of these is the winning horse. Today, Theia seems more accurate than its competitors if you judge based on the number of contributors, and the big tech companies that push the technology forward such as IBM, SAP, and Red Hat just to name a few of them. However, the frontier between these cloud IDEs is still confusing: Theia uses the workspace component of Che, later Theia has become the official UI of Che. Theia is somehow based on VS Code, but then has its own extension mechanism, etc.

LSP or !LSP

In the meantime, there have been attempts to standardize the client/server exchange protocol in the case of text editing, with the Microsoft’s Language Server Protocol (LSP), and later with a variant of LSP to support graphical editing (GLSP). Pushing standards is a common strategy to make stakeholders in a given market collaborate in order to optimize their investments, however, like any other standard-focused community, there is a difference between theory and practice. Achieving a complete interoperability is quite unrealistic, because developing the editor front-end requires a lot of effort already, and even with the LSP in mind, it is common to end up developing the same functionality specifically for each editor, which is not always the top priority of commercial projects or startups willing to reduce their time-to-market.

The cost of migration

As said earlier, there is a large amount of legacy source code built on Eclipse RCP. The sustainability of this code is of strategic importance for many corporations, and unfortunately, most of it is written in Java and relies on SWT. Migrating this code is expensive as it implies rewriting a big part of it in JavaScript, with a particular technical stack/framework in mind, so it’s a long journey, architects have a lot of technical decisions to take along the way, and there is no garantee that they took the right decisions on the long run.

The decline of the Eclipse IDE

Friends of Eclipse, don’t be upset! Having worked with a lot of junior developers in the last 5 years, I have noticed the Eclipse IDE is no longer of interest to many of them. A few years ago, Eclipse was best known for being a good Java IDE, back in the times when IBM was a driving force in the community. Today, the situation is different; Microsoft’s VS Code has established itself as the code editor of choice. It is still incomprehensible to see the poor performance of the Eclipse IDE, especially at startup. It is urgent that one of the cloud IDEs mentioned above take over.

The high volatility of web technologies

We see new frameworks and new trends in web development technologies every day. For instance, the RIA frameworks appeared in the early 2010s finally had a short life, especially with the rise of the new frameworks such as React and Angular. Sever-side rendering is now part of History. One consequence of this was the slow down of investments in RIA-based frameworks, including the Eclipse Remote Application Platform (RAP). Today, RAP is still under maintenance, however its scalability is questionable and its rendering capabilities look outdated compared to newer web frameworks. The incredible pace in which web technologies evolve is one of the factors that make decision makers hesitate to invest in cloud-based modeling tools.

The end of a cycle

As a large part of legacy code must be rewritten in JavaScript or any of its variants (TypeScript, JSX, …), many historical developers (today’s senior developers) with a background in Java, have found themselves overwhelmed by the rise of new paradigms coming from the culture of web development. In legacy desktop applications, it is common to see the UI code, should it be in SWT or Swing, melted with the business logic. Of course, architects have always tried to separate the concerns as much as possible, but the same paradigm, structures, and programming language are used everywhere. With the new web frameworks, the learning curve is so steep that senior developers struggle to get hands on the new paradigms and coding style.

EMF <-> JSON

The last 10 years, EMF has become an industry-proven standard for model persistency, however it is quite unknown in the web development community. The most widely used format in data exchange through the web is JSON, and even though the facilities that come with EMF are advanced compared to the tooling support of JSON, the reality is, achieving complete bidirectionnality between EMF and JSON is not always garanteed. That beeing said, EclipseSource are doing a great job in this area thanks their work on the EMF.cloud framework.

Where is DSL Forge in all of this?

The DSL Forge project will continue to exist as long as it serves users. First, because the tool is still used in academic research. With a variety of legacy R&D prototypes built on RCP, it is easy to have quickly a web-based client thanks to the port of the SWT library on the web which does almost 90% of the job. Moreover, the framework is still used in commercial products, particularly in the field of Cybersecurity and Education. For example, the Coding Park platform, initially developed on Eclipse RAP is still marketed under this technology stack.

Originally, the DSL Forge was seen as a port of Xtext to the web that relies on ACE editor; this is half true as it has also a nice ANTLR/ACE integration. The tool released in 2014 was ahead of its time. Companies were not ready to make the leap (a lot are still in this situation now even with all the progress made), the demand was not mature enough, and the small number of contributors was a barrier to adoption. Given all of that, we made our own path outside the software development tools market. Meanwhile, the former colleagues of Itemis (now at TypeFox) did a really good job: not only they have built a flawless cloud IDE, but also they have managed to forge strategic partnerships which are contributing to the success of Theia. Best of luck for Theia and the incredible team of TypeFox!

To conclude

Today, Plugbee is still supporting the maintenance of DSL Forge to guarantee the sustainability of customer products.

For now, if you are looking to support a more modern technical stack, your best bet is to start with the Xtext servlet. For example, we have integrated the servlet into a Spring Boot/React application, and it works like a charm. The only effort we have made to achieve the integration was to bind properly the Xtext services to ACE editor. This effort has been made as part of the new release of Coding Park. The code will be extracted and made publicly available on the DSL Forge repository soon. If you are interested in this kind of integrations, feel free to get in touch.

Finally, if you are interested in using Eclipse to build custom modeling tools or to migrate existing products to the web, please have a look at our training offer or feel free to contact us.


by alajmi at January 19, 2021 02:22 PM

The Eclipse Foundation’s Move to Europe: Membership Impacts

by Mike Milinkovich at January 15, 2021 08:00 AM

This is a continuation of yesterday’s Welcome to the Eclipse Foundation AISBL blog.

Yesterday, we announced that we completed our move to European-based governance with the creation of Eclipse Foundation AISBL, a Belgian international nonprofit association. In this post, I wanted to take this opportunity to provide an overview of the membership-impacting changes associated with our move to Europe. 

Part of the transition effort has involved updating our membership documents and bylaws to reflect European-based governance and currency. All of these new documents are available on our governance documents page.  Here’s a quick summary of the key changes of relevance to members:

  • Day-to-day interactions don’t change, including the work done in our projects and working groups. 
  • Members will be asked to switch their membership from the U.S. organization to the new Belgian international non-profit organization. We will reach out to members over the next few months to make this happen. You can review the draft membership agreement.
  • As of October 1st of last year, all membership fees are now restated in euros.  Existing members’ fees are being discounted by 10% from October 1, 2020 through September 30, 2021 to help compensate for currency exchange rates.
  • The Solutions membership level is renamed to Contributing to better reflect the diverse group of organizations that participate in, and contribute to, the Eclipse Foundation ecosystem.
  • We have established new bylaws to reflect Belgian laws.

For details about these, and other changes for members, see my previous blog, and our frequently asked questions.

We will be contacting all of our members and committers to update their agreements with the new Belgian entity. This may include your membership agreement, committer agreements, and working group participation agreements as applicable. 

If you have questions or feedback, feel free to reach out to me, or to our team at eclipse-europe@eclipse.org. Thank you for your support!


by Mike Milinkovich at January 15, 2021 08:00 AM

Welcome to the Eclipse Foundation AISBL

by Mike Milinkovich at January 14, 2021 06:00 AM

Today, we’re announcing that the Eclipse Foundation has successfully completed all of the necessary formalities and has formally established the Eclipse Foundation AISBL, an international non-profit association based in Brussels, Belgium.

As a European-based global organization, the Eclipse Foundation is in the ideal position to build on the growing momentum of strategic open source in Europe and on our strength in the region to support open source innovation globally.

Today’s announcement  is the culmination of months of work, since we first announced our intent to establish ourselves as European in May 2020. I want to thank everyone who has had a hand in making our legal transition to Europe a reality. There have been many aspects to consider and a lot of work behind the scenes to get all of the required pieces in place. And the journey isn’t over yet! I will be publishing a second blog post shortly discussing what this means for our members and committers. Tl;dr: keep doing what you’re doing. 

Building on Our Strength in Europe Advances Open Source Innovation Globally

The Eclipse Foundation is the largest open source software foundation in Europe in terms of staff, projects, developers, and members. We have more than 170 members and more than 900 committers based in Europe. And we’re already home to a number of publicly funded European research projects that enable academics, subject matter experts, and large organizations to collaborate and build on research results to benefit corporations and the public.

We see a huge opportunity to build on our strong membership base, active developer community, and strong institutional relationships in Europe to enable the free flow of open software innovation throughout the world. Everyone will benefit from more choices and greater diversity of open source software technologies to build on.

As the Eclipse Foundation continues to grow — we added 75 new members in 2020 alone — the choices, diversity, and benefits will multiply. The future of open source has never looked brighter.

Europe Has Embraced Open Source Software

The strategic value of open source software is recognized across European government organizations, corporations, and publicly funded institutions:

  • The European Commission considers open source initiatives to be strategically important to drive digital and industrial transformations that will help to shape Europe’s digital future.
  • Leading European corporations, including Bosch, Daimler TSS, IBM, and SAP — all founding members of the Eclipse Foundation AISBL — see open source collaboration as an important way to accelerate innovation and increase their competitive edge.
  • Academic and research institutions are increasingly using open source software as a catalyst for innovation.

All of these organizations see the benefits of joining forces with each other, and with organizations around the world, to collaborate on open source software innovation. Many already see the Eclipse Foundation as the right place to foster global industry collaboration on open source projects in strategic technology areas, such as cloud, edge computing, artificial intelligence, connected vehicles, telecom, and IoT.

Get More Information

To provide more insight into our legal move to Europe and what it means for Eclipse Foundation members, we’ve developed a number of resources we think you’ll find helpful. I will also be providing an additional post tomorrow with additional details for members.

This is a big day for the Eclipse Foundation and its community. I want to thank all of my colleagues on the staff and our Board that helped make this possible.


by Mike Milinkovich at January 14, 2021 06:00 AM

Help Shape the Future of IoT and Edge by Completing Our Survey

by Thabang Mashologu at January 12, 2021 01:55 PM

If your business is deploying or using commercial IoT and edge computing solutions, please take a few minutes before February 28 to complete our 2021 IoT and Edge Commercial Adoption Survey. With your input, everyone in the IoT ecosystem will have better insight into the requirements, priorities, and challenges organizations face as they adopt and use commercial IoT and edge solutions, including those that incorporate open source technologies.

The IoT and Edge Commercial Adoption Survey goes beyond our IoT Developer Survey to provide insight into the overall IoT industry landscape. This is the second year we’re running a survey focused on IoT adoption, and the first year it includes questions about edge technologies and edge computing workloads.

 

Survey Results Help IoT and Edge Stakeholders Focus Their Efforts


The survey results give organizations and enterprises of all sizes deeper insight into:

  • Forecasts for IoT and edge market growth 
  • Challenges and potential barriers that impact market development and size
  • The latest IoT and edge computing market trends
  • The mix of proprietary and open source solutions being used in IoT solutions and where open source software provides key benefits
  • How edge computing is being incorporated into IoT solutions
  • Strategies other companies are using to increase their IoT footprint

 
This insight will help all IoT and edge ecosystem stakeholders — software vendors, platform vendors, solution providers, and manufacturing organizations — make strategic and technology decisions that meet business and industry needs.
 
The survey results will also influence the roadmaps of the Eclipse IoT ecosystem and the Edge Native Working Group, helping to ensure they remain focused on the top requirements and priorities for commercial IoT solutions.

Our 2019 IoT Commercial Adoption Survey revealed a number of interesting trends, including the fact that 60 percent of respondents were factoring open source into their IoT development plans. We also learned that IoT development is predominantly fueled by investments from industrial markets, such as energy management, building automation, smart cities, industrial automation, and agriculture. For more insight into the 2019 results, read Mike Milinkovich’s blog on the topic.

 

Add Your Voice to the IoT and Edge Commercial Adoption Survey

 

The 2021 IoT and Edge Commercial Adoption Survey is open January 12 to February 28. It should take 10 minutes or less of your time to complete. The more people that respond to the survey, the broader the view we can provide.

Start the survey now.

 

Get Involved in Eclipse Foundation IoT and Edge Communities

 

The Eclipse Foundation IoT and Edge Native communities are thriving environments with dozens of open source technology projects that address real-world issues and provide the basis for commercial IoT solutions.

To learn more about the industry-scale collaboration happening in the Eclipse IoT Working Group, visit the Eclipse IoT website.

To learn how the edge native community at the Eclipse Foundation is delivering production-ready platforms for edge native application development, operation, and management, visit the Edge Native Working Group website.

 


by Thabang Mashologu at January 12, 2021 01:55 PM

ECF 3.14.19 released - simplify remote service discovery via properties

by Scott Lewis (noreply@blogger.com) at January 08, 2021 12:21 AM

 ECF 3.14.19 has been released.

Along with the usual bug fixes, this release includes new documentation on the use of properties for discovering and importing remote services.   The docs describe the use of properties files for simplifying the import of remote services.   

This capability is especially useful for Eclipse RCP clients accessing Jax-RS/REST remote services.

Patrick Paulin describes a production usage his blog posting here.


by Scott Lewis (noreply@blogger.com) at January 08, 2021 12:21 AM

JBoss Tools 4.18.0.AM1 for Eclipse 2020-09

by jeffmaury at December 23, 2020 10:10 PM

Happy to announce 4.18.0.AM1 (Developer Milestone 1) build for Eclipse 2020-09.

Downloads available at JBoss Tools 4.18.0 AM1.

What is New?

Full info is at this page. Some highlights are below.

Quarkus

Support for codestarts in New Quarkus project wizard

code.quarkus.io has added a new option codestart that allows extension that support this new feature to contribute sample code in the generated project. It is enabled by default and is accessible from the second step in the wizard:

quarkus30

OpenShift

Devfile based deployments

The Application Explorer view is now based on odo 2.x, which allows deployments to be based on devfile (developer oriented manifest file). The components from the default odo registry are listed with legacy S2I components:

devfile

It is also now possible to bootstrap from an empty project as the components from the registry may expose starter projects (sample code that will initialize your empty project).

devfile1

Hibernate Tools

A number of additions and updates have been performed on the available Hibernate runtime providers.

Runtime Provider Updates

The Hibernate 5.4 runtime provider now incorporates Hibernate Core version 5.4.25.Final and Hibernate Tools version 5.4.25.Final.

The Hibernate 5.3 runtime provider now incorporates Hibernate Core version 5.3.20.Final and Hibernate Tools version 5.3.20.Final.

Server Tools

Wildfly 22 Server Adapter

A server adapter has been added to work with Wildfly 22.

CDI Tools

Eclipse Microprofile support

CDI Tools now support Eclipse Microprofile. Eclipse Microprofile related assets are checked against @Inject injections points and are validated according to rules specified in various Eclipse Microprofile specifications.

Forge Tools

Forge Runtime updated to 3.9.8.Final

The included Forge runtime is now 3.9.8.Final.

Enjoy!

Jeff Maury


by jeffmaury at December 23, 2020 10:10 PM

2021 Predictions: Open Source Cloud Development Tools as the New Standard

by Brian King at December 22, 2020 01:35 PM

During 2020 we began to witness the coming of age of open source Cloud Development Tool technologies and increased adoption of those technologies, along with the acceleration of remote workplace practices. My prediction is that 2021 will be a tipping point for Open Source Cloud IDEs and associated technologies.

Innovation happens around the edges, and that certainly has been, and continues to be, the case as more tooling has started moving to the cloud in recent years. Gitpod, an Eclipse Theia adopter, has been around for more than two years, adding value to their product to make developers' lives easier. With native GitLab integration announced recently, automated dev environments for common daily coding tasks are now available to more and more developers.

On the other hand, enterprise tooling offerings have been quick to adopt open source cloud-based technologies to advance their own innovations. RedHat’s Codeready Workspaces, SAP’s Business Application Studio, and Broadcom’s Che4Z (all based on Eclipse open source projects) are just a few examples. Open source cloud-based tools are revitalizing domains like Java and mainframe development and will continue to do so for other domains. Strong interest is being seen in domains such as embedded, modeling / diagramming, and workspace management, just to name a few.

In October, technologists working on cutting edge features and infrastructure gathered together at the IDE Summit. The goal was to start tackling some of the technical challenges that exist today and start to utilize some new technologies to make IDE tooling even more powerful. In the ECD Tools Working Group, we are in a privileged position to not only observe what is happening in this industry, but to also actively participate and shape future outcomes. Here are our top three predictions for 2021.

2021 will serve as the “tipping point” for cloud-based software development

A wholesale move to the cloud driven by the era of COVID-19 and remote work, combined with the increased adoption of cloud-based tools like Eclipse Theia and upcoming release of Github Codespaces, accelerates the trend towards cloud-based development tools. Traditional tools will have a long tail, but the point of no return has been reached. No one is going back to premise-based solutions.

Enterprise DevOps Teams will adopt a hybrid environment, with a mix of open source and proprietary solutions 

Historically, companies have been “all in” on either proprietary solutions or, not wanting to be locked in, they build their own and use open source solutions. While there are options to satisfy both those approaches, a trend we have been noticing more is a hybrid of both. For enterprises part of it is explained by being where the momentum is, and part by wanting to get the right tools to their developers in the right place at the right time. A great example is the extension ecosystem, where VS Code extensions can now be used in not only VS Code, but in multiple products that support the Open VSX Registry. Open source innovation allows teams to pick and choose what works best for their specific needs.

Cloud development tools will breathe new life into “legacy” domains 

Cloud development tools will continue to drive a renewed interest in extending the life of infrastructure running older architectures such as mainframes running COBOL and other languages. Many teams are using cloud-based tools to train a younger generation of developers to maintain, and build on, this installed base. Even ubiquitous languages like Java are making a big comeback because of cloud tools.


by Brian King at December 22, 2020 01:35 PM

WTP 3.20 Released!

December 16, 2020 08:55 PM

The Eclipse Web Tools Platform 3.20 has been released! Installation and updates can be performed using the Eclipse IDE 2020-12 Update Site or through any of the related Eclipse Marketplace . Release 3.20 is included in the 2020-09 Eclipse IDE for Enterprise Java Developers , with selected portions also included in several other packages . Adopters can download the R3.20 p2 repository directly and combine it with the necessary dependencies.

More news


December 16, 2020 08:55 PM

LiClipse 7.1.0 released (improved Dark theme, LiClipseText and PyDev updates)

by Fabio Zadrozny (noreply@blogger.com) at December 08, 2020 07:52 PM

I'm happy to announce that LiClipse 7.1.0 is now available for download.

LiClipse is now based on Eclipse 4.17 (2020-09), one really nice features is that this now enables dark-scrollbars for trees on Windows.

I think an image may be worth a thousand words here, so below is a screenshot showing how the LiClipse Dark theme looks like (on Windows) with the changes!

This release also updates PyDev to 8.1.0, which provides support for Python 3.9 as well as quick-fixes to convert strings to f-strings, among many other things (see: https://pydev.blogspot.com/2020/12/pydev-810-released-python-39-code.html for more details).

Another upgraded dependency is LiClipseText 2.2.0, which now provides grammars to support TypeScript, RobotFramework and JSON by default.



by Fabio Zadrozny (noreply@blogger.com) at December 08, 2020 07:52 PM

ECA Validation Update for Gerrit

December 08, 2020 05:45 PM

We are planning to install a new version of our Gerrit ECA validation plugin this week in an effort to reduce errors when a contribution is validated.

With this update, we are moving our validation logic to our new ECA Validation API that we created for our new Gitlab instance.

We are planning to push these changes live on Wednesday, December 9 at 16:00 GMT, though there is no planned downtime associated with this update.

Our plan is to revert back to a previous version of the plugin if we detect any anomalies after deploying this change.

Please note that we are also planning to apply these changes to our GitHub ECA validation app in Q1 of 2021. You can expect more news about this in the new year!

For those interested, the code for the API and the plugin are open-source and can be seen at git-eca-rest-api and gerrit-eca-plugin.

Please use our GitHub issue to discuss any concerns you might have with this change.


December 08, 2020 05:45 PM

Become an Eclipse Technology Adopter

December 04, 2020 05:50 PM

Did you know that organizations — whether they are members of the Eclipse Foundation or not — can be listed as Eclipse technology adopters?

In November 2019, The Eclipse IoT working group launched a campaign to promote adopters of Eclipse IoT technologies. Since then, more than 60 organizations have shown their support to various Eclipse IoT projects.

With that success in mind, we decided to build a new API service responsible for managing adopters for all our projects.

If needed, this new service will allow us to create an Adopters page for each of our working groups. This is something that we are currently working on for Eclipse Cloud Development Tools. Organizations that wishes to be listed on this new page can submit their request today by following our instructions.

On top of that, every Eclipse project can now leverage our JavaScript plugin to display logos of adopters without committing them in their website git repository.

As an example, you can check out the Eclipse Ditto website.

What Is Changing?

We are migrating logos and related metadata to a new repository. This means that adopters of Eclipse IoT technologies will be asked to submit their request to this new repository. This change is expected to occur on December 10, 2020.

We plan on updating our documentation to point new users to this new repository. If an issue is created in the wrong repository, we will simply move them to the right location.

The process is very similar with this new repository but we did make some improvements:

  1. The path where we store logos is changing
  2. The file format is changing from .yml to .json to reduce user errors.
  3. The structure of the file was modified to make it easier for an organization to adopt multiple projects.

We expect this change to go uninterrupted to our users. The content of the Eclipse IoT Adopters page won’t change and the JavaScript widget hosted on iot.eclipse.org will continue to work as is.

Please create an issue if you have any questions or concerns regarding this migreation.

How Can My Organization be Listed as Adoptor of Eclipse Technology?

The preferred way to become an adopter is with a pull-request:

  1. Add a colored and a white organization logo to static/assets/images/adoptors. We expect logos to be submitted as .svg and they must be transparent. The file size should be less than 20kb since we are planning to use them for the web!
  2. Update the adopter JSON file: config/adopters.json. Organizations can be easily marked as having multiple adopted projects across different working groups, no need to create separate entries for different projects or working groups!

The alternative way to become an adopter is to submit an issue with your logo and the project name that your organization has adopted.

How Can We List Adopters on Our Project Website?

We built a JavaScript plugin to make this process easier.

Usage

Include our plugin in your page:

<script src="//api.eclipse.org/adopters/assets/js/eclipsefdn.adopters.js"></script>

Load the plugin:

<script>
eclipseFdnAdopters.getList({
project_id: "[project_id]"
});
</script>

Create an HTML element containing the chosen selector:

<div class="eclipsefdn-adopters"></div>
  • By default, the selector’s value is eclipsefdn-adopters.

Options

<script>
eclipseFdnAdopters.getList({
project_id: "[project_id]",
selector: ".eclipsefdn-adopters",
ul_classes: "list-inline",
logo_white: false
});
</script>
Attribute Type Default Description
project_id String Required: Select adopters from a specific project ID.
selector String .eclipsefdn-adopters Define the selector that the plugin will insert adopters into.
ul_classes String Define classes that will be assigned to the ul element.
logo_white Boolean false Whether or not we use the white version of the logo.

For more information, please refer our README.md.

A huge thank you to Martin Lowe for all his contributions to this project! His hard work and dedication was crucial for getting this project done on time!


December 04, 2020 05:50 PM

Add Checkstyle support to Eclipse, Maven, and Jenkins

by Christian Pontesegger (noreply@blogger.com) at December 02, 2020 08:52 AM

After PMD and SpotBugs we will have a look at Checkstyle integration into the IDE and our maven builds. Parts of this tutorial are already covered by Lars' tutorial on Using the Checkstyle Eclipse plug-in.

Step 1: Add Eclipse IDE Support

First install the Checkstyle Plugin via the Eclipse Marketplace. Before we enable the checker, we need to define a ruleset to run against. As in the previous tutorials, we will setup project specific rules backed by one ruleset that can also be used by maven later on.

Create a new file for your rules in <yourProject>.releng/checkstyle/checkstyle_rules.xml. If you are familiar with writing rules just add them. In case you are new, you might want to start with one of the default rulesets of checkstyle.

Once we have some rules, we need to add them to our projects. Therefore right click on a project and select Checkstyle/Activate Checkstyle. This will add the project nature and a builder. To make use of our common ruleset, create a file <project>/.checkstyle with following content.

<?xml version="1.0" encoding="UTF-8"?>

<fileset-config file-format-version="1.2.0" simple-config="false" sync-formatter="false">
<local-check-config name="Skills Checkstyle" location="/yourProject.releng/checkstyle/checkstyle_rules.xml" type="project" description="">
<additional-data name="protect-config-file" value="false"/>
</local-check-config>
<fileset name="All files" enabled="true" check-config-name="Skills Checkstyle" local="true">
<file-match-pattern match-pattern=".java$" include-pattern="true"/>
</fileset>
</fileset-config>

Make sure to adapt the name and location attributes of local-check-config according to your project structure.

Checkstyle will now run automatically on builds or can be triggered manually via the context menu: Checkstyle/Check Code with Checkstyle.

Step 2: Modifying Rules

While we had to do our setup manually, we can now use the UI integration to adapt our rules. Select the Properties context entry from a project and navigate to Checkstyle, page Local Check Configurations. There select your ruleset and click Configure... The following dialog allows to add/remove rules and to change rule properties. All your changes are backed by our checkstyle_rules.xml file we created earlier.

Step 3: Maven Integration

We need to add the Maven Checkstyle Plugin to our build. Therefore add following section to your master pom:

	<properties>
<maven.checkstyle.version>3.1.1</maven.checkstyle.version>
</properties>

<build>
<plugins>
<!-- enable checkstyle code analysis -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-checkstyle-plugin</artifactId>
<version>${maven.checkstyle.version}</version>
<configuration>
<configLocation>../../releng/yourProject.releng/checkstyle/checkstyle_rules.xml</configLocation>
<linkXRef>false</linkXRef>
</configuration>

<executions>
<execution>
<id>checkstyle-integration</id>
<phase>verify</phase>
<goals>
<goal>check</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>

In the configuration we address the ruleset we also use for the IDE plugin. Make sure that the relative path fits to your project setup. In the provided setup execution is bound to the verify phase.

Step 4: File Exclusions

Excluding files has to be handled differently for IDE and Maven. The Eclipse plugin allows to define inclusions and exclusions via file-match-pattern entries in the .checkstyle configuration file. To exclude a certain package use:

  <fileset name="All files" enabled="true" check-config-name="Skills Checkstyle" local="true">
...
<file-match-pattern match-pattern="org.yourproject.generated.package.*$" include-pattern="false"/>
</fileset>

In maven we need to add exclusions via the plugin configuration section. Typically such exclusions would go to the pom of a specific project and not the master pom:

	<build>
<plugins>
<!-- remove generated resources from checkstyle code analysis -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-checkstyle-plugin</artifactId>
<version>${maven.checkstyle.version}</version>

<configuration>
<excludes>**/org/yourproject/generated/package/**/*</excludes>
</configuration>
</plugin>
</plugins>
</build>

Step 5: Jenkins Integration

If you followed my previous tutorials on code checkers, then this is business as usual: use the warnings-ng plugin on Jenkins to track our findings:

	recordIssues tools: [checkStyle()]

Try out the live chart on the skills project.


by Christian Pontesegger (noreply@blogger.com) at December 02, 2020 08:52 AM

Add SpotBugs support to Eclipse, Maven, and Jenkins

by Christian Pontesegger (noreply@blogger.com) at November 24, 2020 06:01 PM

SpotBugs (successor of FindBugs) is a tool for static code analysis, similar like PMD. Both tools help to detect bad code constructs which might need improvement. As they partly detect different issues, they may be well combined and used simultaneously.

Step 1: Add Eclipse IDE Support

The SpotBugs Eclipse Plugin can be installed directly via the Eclipse Marketplace.

After installation projects can be configured to use it from the projects Properties context menu. Navigate to the SpotBugs category and enable all checkboxes on the main site. Further set Minimum rank to report to 20 and Minimum confidence to report to Low.

Once done SpotBugs immediately scans the project for problems. Found issues are displayed as custom markers in editors. Further they are visible in the Bug Explorer view as well as in the Problems view.

SpotBugs also comes with a label decoration on elements in the Package Explorer. If you do not like these then disable all Bug count decorator entries in Preferences/General/Appearance/Label Decorations.

Step 2: Maven Integration

Integration is done via the SpotBugs Maven Plugin. To enable, add following section to your master pom:

	<properties>
<maven.spotbugs.version>4.1.4</maven.spotbugs.version>
</properties>

<build>
<plugins>
<!-- enable spotbugs code analysis -->
<plugin>
<groupId>com.github.spotbugs</groupId>
<artifactId>spotbugs-maven-plugin</artifactId>
<version>${maven.spotbugs.version}</version>

<configuration>
<effort>Max</effort>
<threshold>Low</threshold>
<fork>false</fork>
</configuration>

<executions>
<execution>
<id>spotbugs-integration</id>
<phase>verify</phase>
<goals>
<goal>spotbugs</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>

The execution entry takes care that the spotbugs goal is automatically executed during the verify phase. If you remove the execution section you would have to call the spotbugs goal separately:

mvn spotbugs:spotbugs

Step 3: File Exclusions

You might have code that you do not want to get checked (eg generated files). Exclusions need to be defined in an xml file. A simple filter on package level looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<FindBugsFilter>
<!-- skip EMF generated packages -->
<Match>
<Package name="~org\.eclipse\.skills\.model.*" />
</Match>
</FindBugsFilter>

See the documentation for a full description of filter definitions.

Once defined this file can be used from the SpotBugs Eclipse plugin as well as from the maven setup.

To simplify the maven configuration we can add following profile to our master pom:

	<profiles>
<profile>
<!-- apply filter when filter file exists -->
<id>auto-spotbugs-exclude</id>
<activation>
<file>
<exists>.settings/spotbugs-exclude.xml</exists>
</file>
</activation>

<build>
<plugins>
<!-- enable spotbugs exclude filter -->
<plugin>
<groupId>com.github.spotbugs</groupId>
<artifactId>spotbugs-maven-plugin</artifactId>
<version>${maven.spotbugs.version}</version>

<configuration>
<excludeFilterFile>.settings/spotbugs-exclude.xml</excludeFilterFile>
</configuration>
</plugin>
</plugins>
</build>
</profile>
</profiles>

It gets automatically enabled when a file .settings/spotbugs-exclude.xml exists in the current project.

Step 4: Jenkins Integration

Like with PMD, we again use the warnings-ng plugin on Jenkins to track our findings:

	recordIssues tools: [spotBugs(useRankAsPriority: true)]

Try out the live chart on the skills project.

Final Thoughts

PMD is smoother on integration as it stores its rulesets in a common file which can be shared by maven and the Eclipse plugin. SpotBugs currently requires to manage rulesets separately. Still both can be implemented in a way that users automatically get the same warnings in maven and the IDE.


by Christian Pontesegger (noreply@blogger.com) at November 24, 2020 06:01 PM

My main update site moved

by Andrey Loskutov (noreply@blogger.com) at November 23, 2020 08:51 AM

My host provider GMX decided that free hosting that they offered for over a decade is not fitting to their portfolio  anymore (for some security reasons) and simply switched my andrei.gmxhome.de domain off.

Quote:

... aus Sicherheitsgründen modernisieren wir regelmäßig unser Produktportfolio.
Im Zuge dessen möchten wir Sie darüber informieren, dass wir Ihren Webspace mit Ihrem Subdomain-Namen andrei.gmxhome.de zum 19‌.11‌.20‌20 kündigen. 

Because of that, Eclipse update site for all my plugins is moved now: 

from http://andrei.gmxhome.de/eclipse/ 

to https://raw.githubusercontent.com/iloveeclipse/plugins/latest/.

Same way, my "home" is moved to https://github.com/iloveeclipse/plugins/wiki.

(Github obviously has no issues with free hosting).

That means, anyone who used to have my main update site in scripts / Oomph setups, has to change them to use https://raw.githubusercontent.com/iloveeclipse/plugins/latest/ instead.

I'm sorry for that, but that is nothing I could change.


by Andrey Loskutov (noreply@blogger.com) at November 23, 2020 08:51 AM

What’s new in Fabric8 Kubernetes Java client 4.12.0

by Rohan Kumar at October 30, 2020 07:00 AM

The recent Fabric8 Kubernetes Java client 4.12.0 release includes many new features and bug fixes. This article introduces the major features we’ve added between the 4.11.0 and 4.12.0 releases.

I will show you how to get started with the new VolumeSnapshot extension, CertificateSigningRequests, and Tekton triggers in the Fabric8 Tekton client (to name just a few). I’ll also point out several minor changes that break backward compatibility with older releases. Knowing about these changes will help you avoid problems when you upgrade to the latest version of Fabric8’s Java client for Kubernetes or Red Hat OpenShift.

How to get the new Fabric8 Java client

You will find the most current Fabric8 Java client release on Maven Central. To start using the new Java client, add it as a dependency in your Maven pom.xml. For Kubernetes, the dependency is:

<dependency>
  <groupId>io.fabric8</groupId>
  <artifactId>kubernetes-client</artifactId>
  <version>4.12.0</version>
</dependency>

For OpenShift, it’s:

<dependency>
  <groupId>io.fabric8</groupId>
  <artifactId>openshift-client</artifactId>
  <version>4.12.0</version>
</dependency>

Breaking changes in this release

We have moved several classes for this release, so upgrading to the new version of the Fabric8 Kubernetes Java client might not be completely smooth. The changes are as follows:

  • We moved the CustomResourceDefinition to io.fabric8.kubernetes.api.model.apiextensions.v1 and io.fabric8.kubernetes.api.model.apiextensions.v1beta1.
  • We moved SubjectAccessReview, SelfSubjectAccessReview, LocalSubjectAccessReview, and SelfSubjectRulesReview to io.fabric8.kubernetes.api.model.authorization.v1 and io.fabric8.kubernetes.api.model.authorization.v1beta1.
  • The io.fabric8.tekton.pipeline.v1beta1.WorkspacePipelineDeclaration is now io.fabric8.tekton.pipeline.v1beta1.PipelineWorkspaceDeclaration.
  • We introduced a new interface, WatchAndWaitable, which is used by WatchListDeletable and other interfaces. This change should not affect you if you are using the Fabric8 Kubernetes Java client’s domain-specific language (DSL).

The new VolumeSnapshot extension

You might know about the Fabric8 Kubernetes Java client extensions for Knative, Tekton, Istio, and Service Catalog. In this release, we’ve added a new Container Storage Interface (CSI) VolumeSnapshot extension. VolumeSnapshots are in the snapshot.storage.k8s.io/v1beta1 directory. To start using the new extension, add the following dependency to your Maven pom.xml:

<dependency>
  <groupId>io.fabric8</groupId>
  <artifactId>volumesnapshot-client</artifactId>
  <version>4.12.0</version>
</dependency>

Once you’ve added the dependency, you can start using the VolumeSnapshotClient. Here’s an example of how to create a VolumeSnapshot:

try (VolumeSnapshotClient client = new DefaultVolumeSnapshotClient()) {
      System.out.println("Creating a volume snapshot");
      client.volumeSnapshots().inNamespace("default").createNew()
        .withNewMetadata()
        .withName("my-snapshot")
        .endMetadata()
        .withNewSpec()
        .withNewSource()
        .withNewPersistentVolumeClaimName("my-pvc")
        .endSource()
        .endSpec()
        .done();
    }

Spin up a single pod with client.run()

Just like you would with kubectl run, you can quickly spin up a pod with the Fabric8 Kubernetes Java client. You only need to provide a name and image:

try (KubernetesClient client = new DefaultKubernetesClient()) {
    client.run().inNamespace("default").withName("hello-openshift")
            .withImage("openshift/hello-openshift:latest")
            .done();
}

Authentication API support

A new authentication API lets you use the Fabric8 Kubernetes Java client to query a Kubernetes cluster. You should be able to use the API for all operations equivalent to kubectl auth can-i. Here’s an example:

try (KubernetesClient client = new DefaultKubernetesClient()) {
    SelfSubjectAccessReview ssar = new SelfSubjectAccessReviewBuilder()
            .withNewSpec()
            .withNewResourceAttributes()
            .withGroup("apps")
            .withResource("deployments")
            .withVerb("create")
            .withNamespace("dev")
            .endResourceAttributes()
            .endSpec()
            .build();

    ssar = client.authorization().v1().selfSubjectAccessReview().create(ssar);

    System.out.println("Allowed: "+  ssar.getStatus().getAllowed());
}

OpenShift 4 resources

The Fabric8 Kubernetes Java client now supports all of the new OpenShift 4 resources in its OpenShift model. Additional resources added in operators.coreos.com, operators.openshift.io, console.openshift.io, and monitoring.coreos.com are also available within the OpenShift model. Here is an example of using PrometheusRule to monitor a Prometheus instance:

try (OpenShiftClient client = new DefaultOpenShiftClient()) {
    PrometheusRule prometheusRule = new PrometheusRuleBuilder()
            .withNewMetadata().withName("foo").endMetadata()
            .withNewSpec()
            .addNewGroup()
            .withName("./example-rules")
            .addNewRule()
            .withAlert("ExampleAlert")
            .withNewExpr().withStrVal("vector(1)").endExpr()
            .endRule()
            .endGroup()
            .endSpec()
            .build();

    client.monitoring().prometheusRules().inNamespace("rokumar").createOrReplace(prometheusRule);
    System.out.println("Created");

    PrometheusRuleList prometheusRuleList = client.monitoring().prometheusRules().inNamespace("rokumar").list();
    System.out.println(prometheusRuleList.getItems().size() + " items found");
}

Certificate signing requests

We’ve added a new entry point, certificateSigningRequests(), in the main KubernetesClient interface. This means you can use CertificateSigningRequest resources in all of your applications developed with Fabric8:

try (KubernetesClient client = new DefaultKubernetesClient()) {

    CertificateSigningRequest csr = new CertificateSigningRequestBuilder()
            .withNewMetadata().withName("test-k8s-csr").endMetadata()
            .withNewSpec()
            .addNewGroup("system:authenticated")
            .withRequest("<your-req>")
            .addNewUsage("client auth")
            .endSpec()
            .build();
    client.certificateSigningRequests().create(csr);
}

Custom resource definitions

We’ve moved the apiextensions/v1 CustomResourceDefinition (CRD) to the io.fabric8.kubernetes.api.model.apiextensions.v1beta1 and io.fabric8.kubernetes.api.model.apiextensions.v1 packages. You can now use CustomResourceDefinition objects inside apiextensions() like this:

try (KubernetesClient client = new DefaultKubernetesClient()) {
    client.apiextensions().v1()
            .customResourceDefinitions()
            .list()
            .getItems().forEach(crd -> System.out.println(crd.getMetadata().getName()));
}

Creating bootstrap project templates

We’ve provided a new, built-in way to create a project with all of the role bindings you need. It works like OpenShift’s oc adm create-bootstrap-project-template command. Specify the parameters that the template requires in the DSL method. The method then creates the Project and related RoleBindings for you:

try (OpenShiftClient client = new DefaultOpenShiftClient()) {
    client.projects().createProjectAndRoleBindings("default", "Rohan Kumar", "default", "developer", "developer");
}

Tekton model 0.15.1

We’ve updated the Tekton model to version 0.15.1 so that you can take advantage of all the newest upstream features and enhancements for Tekton. This example creates a simple Task and TaskRun to echo “hello world” in a pod. Instead of YAML, we use the Fabric8 TektonClient:

try (TektonClient tkn = new DefaultTektonClient()) {
    // Create Task
    tkn.v1beta1().tasks().inNamespace(NAMESPACE).createOrReplaceWithNew()
            .withNewMetadata().withName("echo-hello-world").endMetadata()
            .withNewSpec()
            .addNewStep()
            .withName("echo")
            .withImage("alpine:3.12")
            .withCommand("echo")
            .withArgs("Hello World")
            .endStep()
            .endSpec()
            .done();

    // Create TaskRun
    tkn.v1beta1().taskRuns().inNamespace(NAMESPACE).createOrReplaceWithNew()
            .withNewMetadata().withName("echo-hello-world-task-run").endMetadata()
            .withNewSpec()
            .withNewTaskRef()
            .withName("echo-hello-world")
            .endTaskRef()
            .endSpec()
            .done();
}

When you run this code, you will see the Task and TaskRun being created. The TaskRun, in turn, creates a pod, which prints the “Hello World” message:

tekton-java-client-demo : $ tkn taskrun list
NAME                        STARTED         DURATION     STATUS
echo-hello-world-task-run   2 minutes ago   19 seconds   Succeeded
tekton-java-client-demo : $ kubectl get pods
NAME                                  READY   STATUS      RESTARTS   AGE
echo-hello-world-task-run-pod-4gczw   0/1     Completed   0          2m17s
tekton-java-client-demo : $ kubectl logs pod/echo-hello-world-task-run-pod-4gczw
Hello World

Tekton triggers in the Fabric8 Tekton client

The Fabric8 Tekton client and model now support Tekton triggers. You can use triggers to automate the creation of Tekton pipelines. All you have to do is embed your triggers in the Tekton continuous deployment (CD) pipeline. Here is an example of using the Fabric8 Tekton client to create a Tekton trigger template:

try (TektonClient tkn = new DefaultTektonClient()) {
    tkn.v1alpha1().triggerTemplates().inNamespace(NAMESPACE).createOrReplaceWithNew()
            .withNewMetadata().withName("pipeline-template").endMetadata()
            .withNewSpec()
                .addNewParam()
                    .withName("gitrepositoryurl")
                    .withDescription("The git repository url")
                .endParam()
                .addNewParam()
                    .withName("gitrevision")
                    .withDescription("The git revision")
                .endParam()
                .addNewParam()
                    .withName("message")
                    .withDescription("The message to print")
                    .withDefault("This is default message")
                .endParam()
                .addNewParam()
                    .withName("contenttype")
                    .withDescription(" The Content-Type of the event")
                .endParam()
            .withResourcetemplates(Collections.singletonList(new PipelineRunBuilder()
                    .withNewMetadata().withGenerateName("simple-pipeline-run-").endMetadata()
                    .withNewSpec()
                        .withNewPipelineRef().withName("simple-pipeline").endPipelineRef()
                        .addNewParam()
                            .withName("message")
                            .withValue(new ArrayOrString("$(tt.params.message)"))
                        .endParam()
                        .addNewParam()
                            .withName("contenttype")
                            .withValue(new ArrayOrString("$(tt.params.contenttype)"))
                        .endParam()
                        .addNewResource()
                            .withName("git-source")
                            .withNewResourceSpec()
                                .withType("git")
                                .addNewParam()
                                .withName("revision")
                                .withValue("$(tt.params.gitrevision)")
                                .endParam()
                                .addNewParam()
                                .withName("url")
                                .withValue("$(tt.params.gitrepositoryurl)")
                                .endParam()
                            .endResourceSpec()
                        .endResource()
                    .endSpec()
                    .build()))
            .endSpec()
            .done();
}

Automatically refresh OpenID Connect tokens

If your Kubernetes provider uses OpenID Connect tokens (like IBM Cloud), you don’t need to worry about your tokens expiring. The new Fabric8 Kubernetes Java client automatically refreshes your tokens by contacting the OpenID Connect provider, which is listed in the ~/.kube/config.

Support for Knative 0.17.2 and Knative Eventing Contrib

For this release, we’ve updated the Knative model to the latest version. We also added new support for the additional resources from Knative Eventing Contrib, which involves sources and channel implementations that integrate with Apache CouchDB, Apache Kafka, Amazon Simple Queue Service (AWS SQS), GitHub, GitLab, and so on.

Here’s an example of creating an AwsSqsSource using KnativeClient:

try (KnativeClient client = new DefaultKnativeClient()) {
    AwsSqsSource awsSqsSource = new AwsSqsSourceBuilder()
            .withNewMetadata().withName("awssqs-sample-source").endMetadata()
            .withNewSpec()
            .withNewAwsCredsSecret("credentials", "aws-credentials", true)
            .withQueueUrl("QUEUE_URL")
            .withSink(new ObjectReferenceBuilder()
                    .withApiVersion("messaging.knative.dev/v1alpha1")
                    .withKind("Channel")
                    .withName("awssqs-test")
                    .build())
            .endSpec()
            .build();
    client.awsSqsSources().inNamespace("default").createOrReplace(awsSqsSource);
}

Get involved!

There are a few ways to get involved with the development of the Fabric8 Kubernetes Java client:

Share

The post What’s new in Fabric8 Kubernetes Java client 4.12.0 appeared first on Red Hat Developer.


by Rohan Kumar at October 30, 2020 07:00 AM

e(fx)clipse 3.7.0 is released

by Tom Schindl at October 12, 2020 06:50 PM

We are happy to announce that e(fx)clipse 3.7.0 has been released. This release contains the following repositories/subprojects:

There are almost no new features (eg the new boxshadow) but only bugfixes who are very important if you use OpenJFX in an OSGi-Environment.

For those of you who already use our pom-First approache the new bits have been pushed to https://maven.bestsolution.at/efxclipse-releases/ and the Sample application at https://github.com/BestSolution-at/e4-efxclipse-maven-sample/tree/efxclipse-3.7.0 has been updated to use the latest release.


by Tom Schindl at October 12, 2020 06:50 PM

Getting started with Eclipse GEF – the Mindmap Tutorial

by Tamas Miklossy (miklossy@itemis.de) at October 12, 2020 06:00 AM

The Eclipse Graphical Editing Framework is a toolkit to create graphical Java applications either integrated in Eclipse or standalone. The most common use of the framework is to develop diagram editors, like a simple Mindmap editor we will create in the GEF Mindmap Tutorial series. Currently, the tutorial consists of 6 parts and all together 19 steps. They are structured as follows:

gef_mindmap_tutorial

Part I – The Foundations

  • Step 1: Preparing the development environment
  • Step 2: Creating the model
  • Step 3: Defining the visuals

Part II – GEF MVC

  • Step 4: Creating the GEF parts
  • Step 5: Models, policies and behaviors
  • Step 6: Moving and resizing a node

Part III – Adding nodes and connections

  • Step 7: Undo and redo operations
  • Step 8: Creating new nodes
  • Step 9: Creating connections

Part IV – Modifying and removing nodes

  • Step 10: Deleting nodes (1)
  • Step 11: Modifying nodes
  • Step 12: Creating feedback
  • Step 13: Deleting nodes (2)

Part V – Creating an Eclipse editor

  • Step 14: Creating an Eclipse editor
  • Step 15: Undo, redo, select all and delete in Eclipse
  • Step 16: Contributing toolbar actions

Part VI – Automatic layouting

  • Step 17: Automatic layouting via GEF layout
  • Step 18: Automatic layouting via Graphviz DOT
  • Step 19: Automatic layouting via the Eclipse Layout Kernel

You can register for the tutorial series using the link below. The article How to set up Eclipse tool development with OpenJDK, GEF, and OpenJFX describes the necessary steps to properly set up your development environment.

Your feedback regarding the Mindmap Tutorial (and the Eclipse GEF project in general) is highly appreciated. If you have any questions or suggestions, please let us know via the Eclipse GEF forum, or create an issue on Eclipse Bugzilla.

For further information, we recommend to take a look at the Eclipse GEF blog articles and watch the Eclipse GEF session on the EclipseCon Europe 2018.

 


by Tamas Miklossy (miklossy@itemis.de) at October 12, 2020 06:00 AM

Eclipse Collections 10.4.0 Released

by Nikhil Nanivadekar at October 09, 2020 08:36 PM

View of the Grinnell Glacier from overlook point after a grueling 9 mile hike

This is a release which we had not planned for, but we released it nonetheless.

This must be the first time since we open sourced Eclipse Collections that we performed two releases within the same month.

Changes in Eclipse Collections 10.4.0

There are only 2 changes in the 10.4.0 release compared to the feature rich 10.3.0 release viz.

  • Added CharAdapter.isEmpty(), CodePointAdapter.isEmpty(), CodePointList.isEmpty(), as JDK-15 introduced CharSequence.isEmpty().
  • Fixed Javadoc errors.

Why was release 10.4.0 necessary?

In today’s rapid deployment world, it should not be a novel aspect that a project performs multiple releases. However, the Eclipse Collections maintainer team, performs releases when one or more of the below criteria are satisfied:

  1. A bulk of features are ready to be released
  2. A user requests a release for their use case
  3. JDK-EA compatibility is breaking
  4. It has been more than 6 months that a version is released

The Eclipse Collections 10.4.0 release was necessary due to point #3. Eclipse Collections participates in the Quality Outreach program of Open JDK. As a part of this program the library is expected to test the Early Access (EA) versions of Java and identify potential issues in the library or the JDK. I had missed setting up the JDK-15-EA builds until after Eclipse Collections 10.3.0 was released. After setting up the JDK-15-EA builds on 16 August 2020, I found compiler issues in the library due to isEmpty() added as a default method on CharSequence. Stuart Marks has written an in-depth blog of why this new default method broke compatibility. So, we had 2 options, let the library not be compatible with JDK-15, or release a new version with the fix. The Eclipse Collections team believes in supporting Java versions from Java 8 to Java-EA. After release 10.3.0, we had opened a new major version target (11.0.0), but the changes required did not warrant a new major version. So, we decided to release 10.4.0 with the fixes to support JDK-15. Eclipse Collections 10.4.0 release is compatible with JDK-15 and JDK-16-EA.

Thank you

To the vibrant and supportive Eclipse Collections community on behalf of contributors, committers, and maintainers for using Eclipse Collections. We hope you enjoy Eclipse Collections 10.4.0.

I am a Project Lead and Committer for the Eclipse Collections OSS project at the Eclipse Foundation. Eclipse Collections is open for contributions.

Show your support, star us on GitHub.

Eclipse Collections Resources:
Eclipse Collections comes with it’s own implementations of List, Set and Map. It also has additional data structures like Multimap, Bag and an entire Primitive Collections hierarchy. Each of our collections have a rich API for commonly required iteration patterns.

  1. Website
  2. Source code on GitHub
  3. Contribution Guide
  4. Reference Guide

Photo of the blog: I took the photo after hiking to the Grinnell Glacier overlook point. It was a strenuous hike, but the view from up top made it worth it. I picked this photo, to elaborate the sense of accomplishment after completing a release in a short amount of time.


Eclipse Collections 10.4.0 Released was originally published in Oracle Developers on Medium, where people are continuing the conversation by highlighting and responding to this story.


by Nikhil Nanivadekar at October 09, 2020 08:36 PM

Obeo's Chronicles, Autumn 2020

by Cédric Brun (cedric.brun@obeo.fr) at October 06, 2020 12:00 AM

I can’t believe we are already looking at Q4. I have so much news to share with you!

Eclipse Sirius, Obeo Cloud Platform and Sirius Web:

This last summer we had the pleasure to organize SiriusCon. This one-day event is each year the opportunity for the modeling community to share their experience, and for the development team to provide visibility on what is currently being worked on and how we see the future of the technology. SiriusCon reached 450 attendees from 53 different countries thanks to 13 fabulous speakers !

The latest edition was special to us, it used to be organized at the end of each year but we decided to postpone it for a few months to be ready for an announcement very close to our heart. We’ve been working on bringing on the Web what we love about Sirius for quite a few years already and reached a point where we have a promising product. Now is the time to accelerate, Mélanie Bats announced it during the conference: we are releasing “Sirius Web” as Open-Source and officially started the countdown !

The announcement at SiriusCon 2020

The reactions to this announcement were fantastic with a lot of excitement within the community.

I am myself very excited for several reasons:

Firstly, I expect this decision will, just like Sirius Desktop was released in Open-Source in 2013, a key factor leading to the creation of hundreds of graphical modelers, in the same way currently demonstrated by the Sirius Gallery but now easily accessible through the Web and leveraging all the capabilities this platform brings.

Our vision is to empower the tool specifier from the data structure and tool definition up to the deployment and exploitation of a modeling tool, directly from the browser, end to end and in an integrated and seamless way.

We are not there yet, though as you’ll see the technology is already quite promising.

Obeo Cloud Platform Modeler

Secondly, for Obeo this decision strengthens our product-based business model while being faithful to our “open core” approach. We will offer, through Obeo Cloud Platform a Sirius Web build extended with Enterprise features, to deploy on public, private clouds or on premise and including support and upgrade guarantees.

Obeo Cloud Platform Offer

Since the announcement the team is working on Sirius Web to publish it as an Open-Source product so that you can start experimenting as soon as EclipseCon 2020. Mélanie will present this in detail during her talk: “Sirius Web: 100% open source cloud modeling platform” ,

EclipseCon 2020

Hint: it’s still time to register for EclipseCon 2020 but do it quickly! The program committee did an excellent job in setting up an exciting program thanks to your many submissions, don’t miss it!

Capella Days Online is coming up!

That’s not it! Each day we see Eclipse Capella get more and more adoption across the globe, this Open-Source product has its own 4-days event: Capella Days Online 2020!

A unique occasion to get many experience reports from multiple domains: Space systems (CNES and GMV), Rail and transportation (Virgin Hyperloop, Nextrail and Vitesco technologies), healthcare (Siemens and Still AB), waste collecting with The SeaCleaners and all of that in addition to aerospace, defence and security with Thales Group. The program is packed with high-quality content: 12 sessions over 4 days from October 12th to 15th, more than 500 attendees already registered, join us and register!

Capella Days
Capella Days Program

SmartEA 6.0 supports Archimate 3.1 and keeps rising!

We use those open-source technologies, like Eclipse Sirius, Acceleo, EMF Compare, M2doc and many more in our “off the shelf” software solution for Enterprise Architecture: Obeo SmartEA.

SmartEA 6.0

This spring we released SmartEA 6.0, which got the Archimate 3.1 certification and brought among many other improvements: new modeling capabilities, extended user management, enhanced BPMN modeling and streamlined user experience.

Our solution is a challenger on the market and convinces more and more customers. Stay tuned, I should be able to share a thrilling announcement soon!

World Clean Up Day and The SeaCleaners

In a nutshell: an excellent dynamic on many fronts and exciting challenges ahead! This is all made possible thanks to the energy and cohesion of the Obeo team in this weird, complex and unusual time. We are committed to the environment and to reduce plastic waste, as such we took part in the World Clean Up Day in partnership with The Sea Cleaners . Beyond the impact of this action which has so much sense to us, it was also a sharing and fun moment!

#WeAreObeo at the World Cleanup Day

Obeo's Chronicles, Autumn 2020 was originally published by Cédric Brun at CEO @ Obeo on October 06, 2020.


by Cédric Brun (cedric.brun@obeo.fr) at October 06, 2020 12:00 AM

MapIterable.getOrDefault() : New but not so new API

by Nikhil Nanivadekar at September 23, 2020 02:30 AM

MapIterable.getOrDefault() : New but not so new API

Sunset at Port Hardy (June 2019)

Eclipse Collections comes with it’s own List, Set, and Map implementations. These implementations extend the JDK List, Set, and Map implementations for easy interoperability. In Eclipse Collections 10.3.0, I introduced a new API MapIterable.getOrDefault(). In Java 8, Map.getOrDefault() was introduced, so what makes it a new API for Eclipse Collections 10.3.0? Technically, it is new but not so new API! Consider the code snippets below, prior to Eclipse Collections 10.3.0:

MutableMap.getOrDefault() compiles and works fine
ImmutableMap.getOrDefault() does not compile

As you can see in the code, MutableMap has getOrDefault() available, however ImmutableMap does not have it. But there is no reason why ImmutableMap should not have this read-only API. I found that MapIterable already had getIfAbsentValue() which has the same behavior. Then why did I still add getOrDefault() to MapIterable?

I added MapIterable.getOrDefault() mainly for easy interoperability. Firstly, most Java developers will be aware of the getOrDefault() method, only Eclipse Collections users would be aware of getIfAbsentValue(). By providing the API same as the JDK it reduces the necessity to learn a new API. Secondly, even though getOrDefault() is available on MutableMap, it is not available on the highest Map interface of Eclipse Collections. Thirdly, I got to learn a Java compiler check which I had not experienced before. I will elaborate this check a bit more in detail because I find it interesting.

After I added getOrDefault() to MapIterable, various Map interfaces in Eclipse Collections started giving compiler errors with messages like: org.eclipse.collections.api.map.MutableMapIterable inherits unrelated defaults for getOrDefault(Object, V) from types org.eclipse.collections.api.map.MapIterable and java.util.Map. This I thought was cool, because at compile time, the Java compiler is ensuring that if there is an API with default implementation in more than one interface in a multi-interface scenario, then Java will not decide which implementation to pick but rather throw compiler errors. Hence, Java ensures at compile time that there is no ambiguity regarding which implementation will be used at runtime. How awesome is that?!? In order to fix the compile time errors, I had to add a default implementations on the interfaces which gave the errors. I always believe in Compiler Errors are better than Runtime Exceptions.

Stuart Marks has put together an awesome blog which covers the specifics of such scenarios. I suggest reading that for in-depth understanding of how and why this behavior is observed.

Post Eclipse Collections 10.3.0 the below code samples will work:

MapIterable.getOrDefault() compiles and works fine
MutableMap.getOrDefault() compiles and works fine
ImmutableMap.getOrDefault() compiles and works fine

Eclipse Collections 10.3.0 was released on 08/08/2020 and is one of our most feature packed releases. The release constitutes numerous contributions from the Java community.

I am a Project Lead and Committer for the Eclipse Collections OSS project at the Eclipse Foundation. Eclipse Collections is open for contributions.

Show your support star us on GitHub.

Eclipse Collections Resources:
Eclipse Collections comes with it’s own implementations of List, Set and Map. It also has additional data structures like Multimap, Bag and an entire Primitive Collections hierarchy. Each of our collections have a rich API for commonly required iteration patterns.

  1. Website
  2. Source code on GitHub
  3. Contribution Guide
  4. Reference Guide

by Nikhil Nanivadekar at September 23, 2020 02:30 AM

Migrating from Fabric8 Maven Plugin to Eclipse JKube 1.0.0

by Rohan Kumar at September 21, 2020 07:00 AM

The recent release of Eclipse JKube 1.0.0 means that the Fabric8 Maven Plugin is no longer supported. If you are currently using the Fabric8 Maven Plugin, this article provides instructions for migrating to JKube instead. I will also explain the relationship between Eclipse JKube and the Fabric8 Maven Plugin (they’re the same thing) and introduce the highlights of the new Eclipse JKube 1.0.0 release. These migration instructions are for developers working on the Kubernetes and Red Hat OpenShift platforms.

Eclipse JKube is the Fabric8 Maven Plugin

Eclipse JKube and the Fabric8 Maven Plugin are one and the same. Eclipse JKube was first released in 2014 under the name of Fabric8 Maven Plugin. The development team changed the name when we pre-released Eclipse JKube 0.1.0 in December 2019. For more about the name change, see my recent introduction to Eclipse JKube. This article focuses on the migration path to JKube 1.0.0.

What’s new in Eclipse JKube 1.0.0

If you are hesitant about migrating to JKube, the following highlights from the new 1.0.0 release might change your mind:

Fabric8 Maven Plugin generates both Kubernetes and Red Hat OpenShift artifacts, and it automatically detects and deploys resources to the underlying cluster. But developers who use Kubernetes don’t need OpenShift artifacts, and OpenShift developers don’t need Kubernetes manifests. We addressed this issue by splitting Fabric8 Maven Plugin into two plugins for Eclipse JKube: Kubernetes Maven Plugin and OpenShift Maven Plugin.

Eclipse JKube migration made easy

Eclipse JKube has a migrate goal that automatically updates Fabric8 Maven Plugin references in your pom.xml to the Kubernetes Maven Plugin or OpenShift Maven Plugin. In the next sections, I’ll show you how to migrate a Fabric8 Maven Plugin-based project to either platform.

Replace the code for the Fabric8 Maven plugin with either the code for the Kubernetes Maven plugin or the OpenShft Maven plugin.

For demonstration purposes, we can use my old random generator application, which displays a random JSON response at a /random endpoint. To start, clone this repository:

$ git clone https://github.com/rohanKanojia/fmp-demo-project.git
cd fmp-demo-project

Then build the project:

$ mvn clean install

Eclipse JKube migration for Kubernetes users

Use the following goal to migrate to Eclipse JKube’s Kubernetes Maven Plugin. Note that we have to specify a complete artifactId and groupId because the plugin is not automatically included in the pom.xml:

$ mvn org.eclipse.jkube:kubernetes-maven-plugin:migrate

Here are the logs for the migrate goal:

fmp-demo-project : $ mvn org.eclipse.jkube:kubernetes-maven-plugin:migrate
[INFO] Scanning for projects...
[INFO]
[INFO] ----------------------< meetup:random-generator >-----------------------
[INFO] Building random-generator 0.0.1
[INFO] --------------------------------[ jar ]---------------------------------
[INFO]
[INFO] --- kubernetes-maven-plugin:1.0.0-rc-1:migrate (default-cli) @ random-generator ---
[INFO] k8s: Found Fabric8 Maven Plugin in pom with version 4.4.1
[INFO] k8s: Renamed src/main/fabric8 to src/main/jkube
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time:  3.154 s
[INFO] Finished at: 2020-09-08T19:32:01+05:30
[INFO] ------------------------------------------------------------------------
fmp-demo-project : $

You’ll notice that all of the Fabric8 Maven Plugin references have been replaced by references to Eclipse JKube. The Kubernetes Maven Plugin is the same as the Fabric8 Maven Plugin. The only differences are the k8s prefix and that it generates Kubernetes manifests.

Once you’ve installed the Kubernetes Maven Plugin, you can deploy your application as usual:

$ mvn k8s:build k8s:resource k8s:deploy

Eclipse JKube migration for OpenShift users

Use the same migration process for the OpenShift Maven Plugin as you would for the Kubernetes Maven Plugin. Run the migrate goal but with the OpenShift MavenPlugin specified:

$ mvn org.eclipse.jkube:openshift-maven-plugin:migrate

Here are the logs for this migrate goal:

fmp-demo-project : $ mvn org.eclipse.jkube:openshift-maven-plugin:migrate
[INFO] Scanning for projects...
[INFO]
[INFO] ----------------------< meetup:random-generator >-----------------------
[INFO] Building random-generator 0.0.1
[INFO] --------------------------------[ jar ]---------------------------------
[INFO]
[INFO] --- openshift-maven-plugin:1.0.0-rc-1:migrate (default-cli) @ random-generator ---
[INFO] k8s: Found Fabric8 Maven Plugin in pom with version 4.4.1
[INFO] k8s: Renamed src/main/fabric8 to src/main/jkube
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time:  4.227 s
[INFO] Finished at: 2020-09-08T19:41:34+05:30
[INFO] ------------------------------------------------------------------------

This goal replaces all of your Fabric8 Maven Plugin references with references to OpenShift Maven Plugin. You can then deploy your application to Red Hat OpenShift just as you normally would:

$ mvn oc:build oc:resource oc:deploy

Conclusion

See the Eclipse JKube migration guide for more about migrating from the Fabric8 Maven Plugin on OpenShift or Kubernetes. Feel free to create a GitHub issue to report any problems that you encounter during the migration. We really value your feedback, so please report bugs, ask for improvements, and tell us about your migration experience.

Whether you are already using Eclipse JKube or just curious about it, don’t be shy about joining our welcoming community:

Share

The post Migrating from Fabric8 Maven Plugin to Eclipse JKube 1.0.0 appeared first on Red Hat Developer.


by Rohan Kumar at September 21, 2020 07:00 AM

After eight: How to set up Eclipse tool development with OpenJDK, GEF, and OpenJFX for newer Java versions

by Svenja Wendler (svenja.wendler@itemis.de) at September 18, 2020 08:00 AM

The article describes the solution to possible stumbling blocks in overcoming a transition from Oracle JDK to OpenJDK 11 in PDE development with GEF and JavaFX.

Eclipse development with Java and JavaFX

"Legacy – with concrete feet into the future" I read in an announcement and wondered whether Java 8 will soon be on the way to the technological future with concrete shoes. But before this happens, we prefer to strip them off and migrate to an up-to-date Java version.

We will focus on an eclipse-based application with JavaFX components below. The conversion is to be made to the latest Java-LTE version, i.e. Java 11. The following survey shows that many developers are still cautious about migrating to higher versions of Java:

jaxenter

JavaFX is no longer a JRE component from Java 11

The first hurdle is already apparent when switching to Java 11, because JavaFX is no longer part of the JDK, either at Oracle or in the open source distribution OpenJDK. There are several solutions to this problem. One would be to use a JDK distribution that delivers Java 11 with JavaFX, such as Bellsoft's Liberica JDK. However, this article focuses on using e(fx)clipse and the OpenJFX SDK.

We use JavaFX in our YAKINDU products and have successfully and successfully converted the development of the GEF framework to the following configuration:

In the following we on the one hand convert our development environment to OpenJDK 11 with OpenJFX and e(fx)clipse, and then turn to the transition for our development, including compiler and launch configurations.

Transforming the development environment

We download and install a new Eclipse IDE, ideally for Eclipse committers.

We upload OpenJDK 11to any directory.

We download OpenJFX SDKand store it in a directory.

We install e(fx)clipse at least in version 3.6.0 in our Eclipse environment (Update-Site: https://download.eclipse.org/efxclipse/updates-nightly/site/).

We finish Eclipse and insert the following lines below the "-vmargs" line into the eclipse.ini file ("---add-modules=ALL-SYSTEM" does not need to be re-inserted if already available):

-Dosgi.framework.extensions=org.eclipse.fx.osgi
-Defxclipse.java-modules.dir=C:\Program
Files\Java\javafx-sdk-11.0.2\lib --add-modules=ALL-SYSTEM

Note: We adjust the path to the OpenJFX libraries according to the operating system and the location in the file system. We don't use quotation marks, even if the path contains spaces. Otherwise, the setting would be tacitly ignored. Furthermore, the path must not be terminated with a slash or backslash. The changes to the eclipse.ini must be made after the installation of e(fx)clipse, otherwise Eclipse will not start again.

If OpenJDK 11 is the only JDK installed, nothing else needs to be changed. If OpenJDK 11 is not installed, but is only unpacked or other Java versions are installed on the computer, then the following lines should also be inserted in the eclipse.ini directly above the "-vmargs" line:

-vm
/path/to/jdk-11.0.5+10/Contents/Home/bin (adapt to your directory)

Now let's start Eclipse again. We then install the end-user tools of GEF DOT via the eclipse release update site (for example, http://download.eclipse.org/releases/2019-06).

These use JavaFX (and SWT integration) so we can check if our installation worked. If successful, the "DOT Graph" view should look like this:

Possible source of error here are the settings in the eclipse.ini, which we should look again step by step.

Possible source of error here are the settings in the eclipse.ini, which we should look again step by step.

If the IDE finally runs successfully with OpenJDK 11, OpenJFX 11 and e(fx)clipse, we now take care of the workspace and the runtime.

Transforming the development

In order to change the trend, the following must be done:

  • Set OpenJDK as JRE to use
  • Ensure that this JRE is used as an execution environment
  • Set the openjfx-libs folder in the e(fx)clipse preferences

These changes should compile the workspace. The following section describes these steps in more detail.

We set OpenJDK as a runtime environment in the Eclipse preferences. To do this, we select  „Window → Preferences → Java → Installed JREs → Add … and the path to the bin directory of the JDK.

We make sure that this JDK is applied to the execution environment we set. If necessary, we may remove all other JDKs to ensure that the OpenJDK is actually used:

We set the OpenJFX SDK in the preferences for e(fx)clipse. Above, we saved the OpenJFX SDK to a directory. Its lib directory must be in the Eclipse Preferences (Window → Preferences → JavaFX) JavaFX 11 + SDK. This should be the same path as before in the eclipse.ini. This setting makes your Eclipse aware of the JavaFX libraries for development.

Now everything is done to compile the workspace. If we want to start the application in the runtime, there is still a small thing to do.

We'll add the following VM arguments in the launch configuration; they are the same ones that we have previously entered in the eclipse.ini :

-Dosgi.framework.extensions=org.eclipse.fx.osgi
-Defxclipse.java-modules.dir=C:\Program
Files\Java\javafx-sdk-11.0.2\lib

If necessary, you can load the sources (https://github.com/eclipse/gef.git) of the GEF framework into the workspace and try out the above points directly. For more information on GEF development, see the developer documentation page: https://github.com/eclipse/gef/wiki#developer-documentation.

Conclusion

The procedure above should be used to switch existing Eclipse applications to OpenJDK 11 and OpenJFX 11 with e(fx)clipse.

Are there any comments or questions about this approach?

We welcome any kind of feedback.


by Svenja Wendler (svenja.wendler@itemis.de) at September 18, 2020 08:00 AM

WTP 3.19 Released!

September 16, 2020 10:55 PM

The Eclipse Web Tools Platform 3.19 has been released! Installation and updates can be performed using the Eclipse IDE 2020-09 Update Site or through the Eclipse Marketplace . Release 3.19 is included in the 2020-09 Eclipse IDE for Enterprise Java Developers , with selected portions also included in several other packages . Adopters can download the R3.19.0 p2 repository directly and combine it with the necessary dependencies.

More news


September 16, 2020 10:55 PM

Browser like BoxShadow for JavaFX coming with e(fx)clipse 3.7.0

by Tom Schindl at September 16, 2020 09:54 AM

Using BoxShadow is a very common thing in modern UIs, so it might not be suprising that designers defining UIs often also use them heavily.

Unfortunately JavaFX has NO 100% compatible effect and even worse one who is closest (DropShadow) leads to a massive performance hit as shown in this video

On the left hand side is a Node who has a DropShadow-Effect applied to it and you notice that once the effect is applied that the animation isn’t smooth any more. On the right hand side you see a new Node we’ll release with e(fx)clipse 3.7.0 who provides a new BoxShadow-Node (named BoxShadow2).

Beside getting a huge performance win, the BoxShadow-Node uses the same semantics the browser counterpart does so you can port CSS definition to your JavaFX-Application.

For completness here’s the code for this demo video.

package org.eclipse.fx.ui.controls.demo;

import org.eclipse.fx.ui.controls.effects.BoxShadow2;

import javafx.animation.Animation;
import javafx.animation.Animation.Status;
import javafx.animation.TranslateTransition;
import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.geometry.Pos;
import javafx.scene.Node;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.effect.DropShadow;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.Region;
import javafx.scene.layout.StackPane;
import javafx.scene.paint.Color;
import javafx.stage.Stage;
import javafx.util.Duration;

public class InTheShadow extends Application {

	public static void main(String[] args) {
		launch(args);
	}

	@Override
	public void start(Stage primaryStage) throws Exception {
		BorderPane p = new BorderPane();
		p.setPadding(new Insets(20));

		Button shadowMe = new Button("Toggle Shadow");
		p.setTop(shadowMe);

		Region pane;

		if (Boolean.getBoolean("efxclipse-shadow")) {
			BoxShadow2 shadow = new BoxShadow2(createComplexUI());
			shadow.setShadowVisible(false);
			pane = shadow;
		} else {
			pane = new StackPane(createComplexUI());
		}

		p.setCenter(pane);

		shadowMe.setOnAction(evt -> toggleShadow(pane));

		Scene s = new Scene(p, 1200, 800);
		primaryStage.setTitle("efxclipse-shadow: " + Boolean.getBoolean("efxclipse-shadow"));
		primaryStage.setScene(s);
		primaryStage.show();
	}

	private void toggleShadow(Region pane) {
		if (pane instanceof BoxShadow2) {
			BoxShadow2 s = (BoxShadow2) pane;
			s.setShadowVisible(!s.isShadowVisible());
		} else {
			if (pane.getEffect() != null) {
				pane.setEffect(null);
			} else {
				DropShadow dropShadow = new DropShadow();
				dropShadow.setRadius(5.0);
				dropShadow.setOffsetX(3.0);
				dropShadow.setOffsetY(3.0);
				dropShadow.setColor(Color.color(0.4, 0.5, 0.5));
				pane.setEffect(dropShadow);
			}
		}
	}

	private Node createComplexUI() {
		StackPane pane = new StackPane();
		pane.setStyle("-fx-background-color: white");

		for (int i = 0; i < 100; i++) {
			Button b = new Button("Button " + i);
			b.setTranslateX(i % 100);
			pane.getChildren().add(b);
		}

		Button animated = new Button("Animated");
		StackPane.setAlignment(animated, Pos.BOTTOM_CENTER);

		TranslateTransition t = new TranslateTransition(Duration.millis(1000), animated);
		t.setAutoReverse(true);
		t.setFromX(-300);
		t.setToX(300);
		t.setCycleCount(Animation.INDEFINITE);
		animated.setOnAction(evt -> {
			if (t.getStatus() == Status.RUNNING) {
				t.pause();
			} else {
				t.play();
			}
		});

		pane.getChildren().add(animated);

		return pane;
	}

}

by Tom Schindl at September 16, 2020 09:54 AM

N4JS goes LSP

by n4js dev (noreply@blogger.com) at September 08, 2020 11:00 AM

A few weeks ago we started to publish a VSCode extension for N4JS to the VSCode Marketplace. This was one of the last steps on our road to support LSP-based development tools. We chose to make this major change because of several reasons that affected both users and developers of N4JS.

An N4JS project in VSCode with the N4JS language extension


Our language extension for N4JS is hosted at the Microsoft VSCode Marketplace and will be updated regularly by our Jenkins jobs. Versions will be kept in sync with the language version, compiler version and version of the N4JS libraries to avoid incompatible setups. At the moment, the LSP server supports all main features of the language server protocol (LSP) such as validation, content assist, outline view, jump to definition and implementation, open symbol, the rename refactoring and many more. In addition, it will also generate output files whenever a source change is detected. We therefore heavily improved the incremental LSP builder of the Xtext framework and plan to migrate back those changes to the Xtext repository. For the near future we plan to work on stability, performance and also to support some of the less frequently used LSP features.


When looking back, development of N4JS has been based on the Xtext framework from the start and thus it was straightforward to build an Eclipse-based IDE as our main development tool. Later on, we also implemented a headless compiler used for manual and automated testing from the command line. The development of the compiler already indicated some problems stemming from the tight integration of the Eclipse and the Xtext frameworks together with our language specific implementations. To name an example, we had two separate builder implementations: one for the IDE and the other for the headless compiler. Since the Eclipse IDE is using a specific workspace and project model, we also had two implementations for this abstraction. Another important problem we faced with developing an Eclipse-based IDE was that at some points we had to implement UI tests using the SWTBot framework. For us, SWTBot tests turned out to be very hard to develop, to maintain, and to keep from becoming flaky. Shifting to LSP-based development tools, i.e. the headless compiler and an LSP server, allows us to overcome the aforementioned problems.


Users of N4JS now have the option to either use our extension for VSCode or integrate our LSP server into their favorite IDE themselves, even into the Eclipse IDE. They also benefit from more lightweight tools regarding disk size and start-up performance, as well as a better integration into well-known tools from the JavaScript development ecosystem.




by n4js dev (noreply@blogger.com) at September 08, 2020 11:00 AM

No Java? No Problem!

by Ed Merks (noreply@blogger.com) at August 18, 2020 07:50 AM

For the 2020-09 Eclipse Simultaneous Release, the Eclipse IDE will require Java 11 or higher to run.  If the user doesn't have that installed, Eclipse simply won't start, instead popping up this dialog: 

That of course begs the question, what should I do now? The Eclipse Installer itself is an Eclipse application so it too will fail to start for the same reason.  At least on Windows the Eclipse Installer is distributed as a native executable, so it will open a semi-helpful page in the browser to direct the user find a suitable JRE or JDK to install rather than popping up the above dialog.

Of course we are concerned that many users will update 2020-06 to 2020-09 only to find that Eclipse fails to start afterwards because they are currently running with Java 8.  But Mickael Istria has planned ahead for this as part of the 2020-06 release, adding a validation check during the update process to determine if the current JVM is suitable for the update, thereby helping prevent this particular problem.

Now that JustJ is available for building Eclipse products with an embedded JRE, we can do even better.  Several of the Eclipse Packaging Project's products will include a JustJ JRE in the packages for 2020-09, i.e., the C/C++, Rust, and JavaScript packages.  Also the Eclipse Installer for 2020-09 will provide product variants that include a JustJ JRE.  So they all will simply run out of the box regardless of which version of Java is installed and of course even when Java is not installed at all.

Even better, the Eclipse Installer will provide JustJ JREs as choices in the dialogs.  A user who does not have Java installed will be offered JustJ JRE 14.02 as the default JRE.

Choices of JustJ JREs will always be available in the Eclipse Installer; it will be the default only if no suitable version of Java is currently installed on the machine.

Eclipse Installers with an embedded JustJ JRE will be available starting with 2020-09 M3 for all supported platforms.  For a sneak preview, you can find them in the nightly builds folder.  The ones with "-jre" in the name contain an embedded JRE (and the ones with "-restricted" in the name will only install 2020-09 versions of the products).

It was a lot of work getting this all in place, both building the JREs and updating Oomph's build to consume them.  Not only that, just this week I had to rework EMF's build so that it functions with the latest platform where some of the JDT bundles have incremented their BREEs to Java 11.  There's always something disruptive that creates a lot of work.  I should point out that no one funds this work, so I often question how this is all actually sustainable in the long term (not to mention questioning my personal sanity).

I did found a small GmbH here in Switzerland.  It's very pretty here!

If you need help, consider that help is available. If no one pays for anything, at some point you will only get what you pay for, i.e., nothing. But that's a topic for another blog...


by Ed Merks (noreply@blogger.com) at August 18, 2020 07:50 AM

Dogfooding the Eclipse Dash License Tool

by waynebeaton at July 22, 2020 03:43 PM

There’s background information about this post in my previous post. I’ve been using the Eclipse Dash License Tool on itself.

$ mvn dependency:list | grep -Poh "\S+:(system|provided|compile)$" | java -jar licenses.jar -
Querying Eclipse Foundation for license data for 7 items.
Found 6 items.
Querying ClearlyDefined for license data for 1 items.
Found 1 items.
Vetted license information was found for all content. No further investigation is required.
$ _

Note that in this example, I’ve removed the paths to try and reduce at least some of the clutter. I also tend to add a filter to sort the dependencies and remove duplicates (| sort | uniq), but that’s not required here so I’ve left it out.

The message that “[v]etted license information was found for all content”, means that the tool figures that all of my project’s dependencies have been fully vetted and that I’m good to go. I could, for example, create a release with this content and be fully aligned with the Eclipse Foundation’s Intellectual Property Policy.

The tool is, however, only as good as the information that it’s provided with. Checking only the Maven build completely misses the third party content that was introduced by Jonah’s helpful contribution that helps us obtain dependency information from a yarn.lock file.

$ cd yarn
$ node index.js | java -jar licenses.jar -
Querying Eclipse Foundation for license data for 1 items.
Found 0 items.
Querying ClearlyDefined for license data for 1 items.
Rejected: https://clearlydefined.io/definitions/npm/npmjs/@yarnpkg/lockfile/1.1.0
Found 0 items.
License information could not automatically verified for the following content:

npm/npmjs/@yarnpkg/lockfile/1.1.0 (null)

Please create contribution questionnaires for this content.

$ _

So… oops. Missed one.

Note that the updates to the IP Policy include a change that allows project teams to leverage third-party content (that they believe to be license compatible) in their project code during development. All content must be vetted by the IP due diligence process before it may be leveraged by any release. So the project in its current state is completely onside, but the license of that identified bit of content needs to be resolved before it can be declared as proper release as defined by the Eclipse Foundation Development Process.

This actually demonstrates why I opted to create the tool as CLI that takes a flat list of dependencies as input: we use all sorts of different technologies, and I wanted to focus the tool on providing license information for arbitrary lists of dependencies.

I’m sure that Denis will be able to rewrite my bash one-liner in seven keystrokes, but here’s how I’ve combined the two so that I can get complete picture with a “single” command:

$ { mvn dependency:list | grep -Poh "\S+:(system|provided|compile)$" ; cd yarn && node index.js; } | java -jar licenses.jar -
Querying Eclipse Foundation for license data for 8 items.
Found 6 items.
Querying ClearlyDefined for license data for 2 items.
Rejected: https://clearlydefined.io/definitions/npm/npmjs/@yarnpkg/lockfile/1.1.0
Found 1 items.
License information could not automatically verified for the following content:

npm/npmjs/@yarnpkg/lockfile/1.1.0 (null)

Please create contribution questionnaires for this content.
$ _

I have some work to do before I can release. I’ll need to engage with the Eclipse Foundation’s IP Team to have that one bit of content vetted.

As a side effect, the tool generates a DEPENDENCIES file. The dependency file lists all of the dependencies provided in the input in ClearlyDefined coordinates along with license information, whether or not the content is approved for use or is restricted (meaning that further investigation is required), and the authority that determined the status.

maven/mavencentral/org.glassfish/jakarta.json/1.1.6, EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0, approved, emo_ip_team
maven/mavencentral/commons-codec/commons-codec/1.11, Apache-2.0, approved, CQ15971
maven/mavencentral/org.apache.httpcomponents/httpcore/4.4.13, Apache-2.0, approved, CQ18704
maven/mavencentral/commons-cli/commons-cli/1.4, Apache-2.0, approved, CQ13132
maven/mavencentral/org.apache.httpcomponents/httpclient/4.5.12, Apache-2.0, approved, CQ18703
maven/mavencentral/commons-logging/commons-logging/1.2, Apache-2.0, approved, CQ10162
maven/mavencentral/org.apache.commons/commons-csv/1.8, Apache-2.0, approved, clearlydefined
npm/npmjs/@yarnpkg/lockfile/1.1.0, unknown, restricted, none

Most of the content was vetted by the Eclipse Foundation’s IP Team (the entries marked “CQ*” have corresponding entries in IPZilla), one was found in ClearlyDefined, and one requires further investigation.

The tool produces good results. But, as I stated earlier, it’s only as good as the input that it’s provided with and it only does what it is designed to do (it doesn’t, for example, distinguish between prerequisite dependencies and dependencies of “works with” dependencies; more on this later). The output of the tool is obviously a little rough and could benefit from the use of a proper configurable logging framework. There’s a handful of other open issues for your consideration.


by waynebeaton at July 22, 2020 03:43 PM

Why ServiceCaller is better (than ServiceTracker)

July 07, 2020 07:00 PM

My previous post spurned a reasonable amount of discussion, and I promised to also talk about the new ServiceCaller which simplifies a number of these issues. I also thought it was worth looking at what the criticisms were because they made valid points.

The first observation is that it’s possible to use both DS and ServiceTracker to track ServiceReferences instead. In this mode, the services aren’t triggered by default; instead, they only get accessed upon resolving the ServiceTracker using the getService() call. This isn’t the default out of the box, because you have to write a ServiceTrackerCustomizer adapter that intercepts the addingService() call to wrap the ServiceTracker for future use. In other words, if you change:

serviceTracker = new ServiceTracker<>(bundleContext, Runnable.class, null);
serviceTracker.open();

to the slightly more verbose:

serviceTracker = new ServiceTracker<>(bundleContext, Runnable.class,
new ServiceTrackerCustomizer<Runnable, Wrapped<Runnable>>() {
public Wrapped<Runnable> addingService(ServiceReference<Runnable> ref) {
return new Wrapped<>(ref, bundleContext);
}
}
}
static class Wrapped<T> {
private ServiceReference<T> ref;
private BundleContext context;
public Wrapped(ServiceReference<T> ref, BundleContext context) {
this.ref = ref;
this.context = context;
}
public T getService() {
try {
return context.getService(ref);
} finally {
context.ungetService(ref);
}
}
}

Obviously, no practical code uses this approach because it’s too verbose, and if you’re in an environment where DS services aren’t widely used, the benefits of the deferred approach are outweighed by the quantity of additional code that needs to be written in order to implement this pattern.

(The code above is also slightly buggy; we’re getting the service, returning it, then ungetting it afterwards. We should really just be using it during that call instead of returning it in that case.)

Introducing ServiceCaller

This is where ServiceCaller comes in.

The approach of the ServiceCaller is to optimise out the over-eager dereferencing of the ServiceTracker approach, and apply a functional approach to calling the service when required. It also has a mechanism to do single-shot lookups and calling of services; helpful, for example, when logging an obscure error condition or other rarely used code path.

This allows us to elegantly call functional interfaces in a single line of code:

Class callerClass = getClass();
ServiceCaller.callOnce(callerClass, Runnable.class, Runnable:run);

This call looks for Runnable service types, as visible from the caller class, and then invoke the function getClass() as lambda. We can use a method reference (as in the above case) or you can supply a Consumer<T> which will be passed the reference that is resolved from the lookup.

Importantly, this call doesn’t acquire the service until the callOnce call is made. So, if you have an expensive logging factory, you don’t have to initialise it until the first time it’s needed – and even better, if the error condition never occurs, you never need to look it up. This is in direct contrast to the ServiceTracker approach (which actually needs more characters to type) that accesses the services eagerly, and is an order of magnitude better than having to write a ServiceTrackerCustomiser for the purposes of working around a broken API.

However, note that such one-shot calls are not the most efficient way of doing this, especially if it is to be called frequently. So the ServiceCaller has another mode of operation; you can create a ServiceCaller instance, and hang onto it for further use. Like its single-shot counterpart, this will defer the resolution of the service until needed. Furthermore, once resolved, it will cache that instance so you can repeatedly re-use it, in the same way that you could do with the service returned from the ServiceTracker.

private ServiceCaller<Runnable> service;
public void start(BundleContext context) {
this.service = new ServiceCaller<>(getClass(), Runnable.class);
}
public void stop(BundleContext context) {
this.service.unget();
}
public void doSomething() {
service.call(Runnable::run);
}

This doesn’t involve significantly more effort than using the ServiceTracker that’s widely in use in Eclipse Activators at the moment, yet will defer the lookup of the service until it’s actually needed. It’s obviously better than writing many lines of ServiceTrackerCustomiser and performs better as a result, and is in most cases a type of drop-in replacement. However, unlike ServiceTracker (which returns you a service that you can then do something with afterwards), this call provides a functional consumer interface that allows you to pass in the action to take.

Wrapping up

We’ve looked at why ServiceTracker has problems with eager instantiation of services, and the complexity of code required to do it the right way. A scan of the Eclipse codebase suggests that outside of Equinox, there are very few uses of ServiceTrackerCustomiser and there are several hundred calls to ServiceTracker(xxx,yyy,null) – so there’s a lot of improvements that can be made fairly easily.

This pattern can also be used to push down the acquisition of the service from a generic Plugin/Activator level call to where it needs to be used. Instead of standing this up in the BundleActivator, the ServiceCaller can be used anywhere in the bundle’s code. This is where the real benefit comes in; by packaging it up into a simple, functional consumer, we can use it to incrementally rid ourselves of the various BundleActivators that take up the majority of Eclipse’s start-up.

A final note on the ServiceCaller – it’s possible that when you run the callOnce method (or the call method if you’re holding on to it) that a service instance won’t be available. If that’s the case, you get notified by a false return call from the call method. If a service is found and is processed, you’ll get a true returned. For some operations, a no-op is a fine behaviour if the service isn’t present – for example, if there’s no LogService then you’re probably going to drop the log event anyway – but it allows you to take the corrective action you need.

It does mean that if you want to capture return state from the method call then you’ll need to have an alternative approach. The easiest way is to have an final Object result[] = new Object[1]; before the call, and then the lambda can assign the return value to the array. That’s because local state captured by lambdas needs to be a final reference, but a final reference to a mutable single element array allows us to poke a single value back. You could of course use a different class for the array, depending on your requirements.

So, we have seen that ServiceCaller is better than ServiceTracker, but can we do even better than that? We certainly can, and that’s the purpose of the next post.


July 07, 2020 07:00 PM

Why ServiceTracker is Bad (for DS)

July 02, 2020 07:00 PM

In a presentation I gave at EclipseCon Europe in 2016, I noted that there were prolems when using ServiceTracker and on slide 37 of my presentation noted that:

  • ServiceTracker.open() is a blocking call
  • ServiceTracker.open() results in DS activating services

Unfortunately, not everyone agrees because it seems insane that ServiceTracker should do this.

Unfortunately, ServiceTracker is insane.

The advantage of Declarative Services (aka SCR, although no-one calls it that) is that you can register services declaratively, but more importantly, the DS runtime will present the existence of the service but defer instantiation of the component until it’s first requested.

The great thing about this is that you can have a service which does many class loads or timely actions and defer its use until the service is actually needed. If your service isn’t required, then you don’t pay the cost for instantiating that service. I don’t think there’s any debate that this is a Good Thing and everyone, so far, is happy.

Problem

The problem, specifically when using ServiceTracker, is that you have to do a two-step process to use it:

  1. You create a ServiceTracker for your particular service class
  2. You call open() on it to start looking for services
  3. Time passes
  4. You acquire the service form the ServiceTracker to do something with it

There is a generally held mistaken belief that the DS component is not instantiated until you hit step 4 in the above. After all, if you’re calling the service from another component – or even looking up the ServiceReference yourself – that’s what would happen.

What actually happens is that the DS component is instantiated in step 2 above. That’s because the open() call – which is nicely thread-safe by the way, in the way that getService() isn’t – starts looking for services, and then caches the InitialTracked service, which causes DS to instantiate the component for you. Since most DS components often have a default, no-arg constructor, this generally misses most people’s attention.

If your component’s constructor – or more importantly, the fields therein, cause many classes to be loaded or perform substantial work or calculation, the fact that you’re hitting a ServiceTracker.open() synchronized call can take some non-trivial amount of time. And since this is typically in an Activator.start() method, it means that your nicely delay-until-its-needed component is now on the critical path of this bundle’s start-up, despite not actually needing the service right now.

This is one of the main problems in Eclipse’s start-up; many, many thousands of classes are loaded too eagerly. I’ve been working over the years to try and reduce the problem but it’s an uphill struggle and bad patterns (particularly the use of Activator) are endemic in a non-trivial subset of the Eclipse ecosystem. Of course, there are many fine and historical reasons why this is the case, not the least of which is that we didn’t start shipping DS in the Eclipse runtime until fairly recently.

Repo repro

Of course, when you point this out, not everyone is aware of this subtle behaviour. And while opinions may differ, code does not. I have put together a sample project which has two bundles:

  • Client, which has an Activator (yeah I know, I’m using it to make a point) that uses a ServiceTracker to look for Runnable instances
  • Runner, which has a DS component that provides a Runnable interface

When launched together, as soon as the ServiceTracker.open() method is called, you can see the console printing "Component has been instantiated" message. This is despite the Client bundle never actually using the service that the ServiceTracker causes to be obtained.

If you run it with the system property -DdisableOpen=true, the ServiceTracker.open() statement is not called, and the component is not instantiated.

This is a non-trivial reason as to why Eclipse startup can be slow. There are many, many uses of ServiceTracker to reach out to other parts of the system, and regardless of whether these are lazy DS components or have been actively instantiated, the use of ServiceTracker.open() causes them to all be eagerly activated, even before they’re needed. We can migrate Eclipse’s services to DS (and in fact, I’m working on doing just that) but until we eliminate the ServiceTracker from various Activators, we won’t see the benefit.

The code in the github repository essentially boils down to:

public void start(BundleContext bundleContext) throws Exception {
serviceTracker = new ServiceTracker<>(bundleContext, Runnable.class, null);
if (!Boolean.getBoolean("disableOpen")) {
serviceTracker.open(); // This will cause a DS component to be instantiated even though we don't use it
}
}

Unfortunately, there’s no way to use ServiceTracker to listen to lazily activated services, and as an OSGi standard, the behaviour is baked in to it.

Fortunately, there’s a lighter-weight tracker you can use called ServiceCaller – but that’s a topic for another blog post.

Summary

Using ServiceTracker.open() will cause lazily instantiated DS components to be activated eagerly, before the service is used. Instead of using ServiceTracker, try moving your service out to a DS component, and then DS will do the right thing.


July 02, 2020 07:00 PM

How to install RDi in the latest version of Eclipse

by Wim at June 30, 2020 03:57 PM

Monday, June 29, 2020
In this blog, I am going to show you how to install IBM RDi into the latest and the greatest version of Eclipse. If you prefer to watch a video then scroll down to the end. **EDIT** DOES NOT WORK WITH ECLIPSE 2020/09 AND HIGHER.

Read more


by Wim at June 30, 2020 03:57 PM

Quarkus – Supersonic Subatomic IoT

by Jens Reimann at June 30, 2020 03:22 PM

Quarkus is advertised as a “Kubernetes Native Java stack, …”, so we took it to a test, and checked what benefits we can get, by replacing an existing service from the IoT components of EnMasse, the cloud-native, self-service messaging system.

The context

For quite a while, I wanted to try out Quarkus. I wanted to see what benefits it brings us in the context of EnMasse. The IoT functionality of EnMasse is provided by Eclipse Honoâ„¢, which is a micro-service based IoT connectivity platform. Hono is written in Java, makes heavy use of Vert.x, and the application startup and configuration is being orchestrated by Spring Boot.

EnMasse provides the scalable messaging back-end, based on AMQP 1.0. It also takes care of the Eclipse Hono deployment, alongside EnMasse. Wiring up the different services, based on an infrastructure custom resource. In a nutshell, you create a snippet of YAML, and EnMasse takes care and deploys a messaging system for you, with first-class support for IoT.

Architecture diagram, explaining the tenant service.
Architectural overview – showing the Tenant Service

This system requires a service called the “tenant service”. That service is responsible for looking up an IoT tenant, whenever the system needs to validate that a tenant exists or when its configuration is required. Like all the other services in Hono, this service is implemented using the default stack, based on Java, Vert.x, and Spring Boot. Most of the implementation is based on Vert.x alone, using its reactive and asynchronous programming model. Spring Boot is only used for wiring up the application, using dependency injection and configuration management. So this isn’t a typical Spring Boot application, it is neither using Spring Web or any of the Spring Messaging components. And the reason for choosing Vert.x over Spring in the past was performance. Vert.x provides an excellent performance, which we tested a while back in our IoT scale test with Hono.

The goal

The goal was simple: make it use fewer resources, having the same functionality. We didn’t want to re-implement the whole service from scratch. And while the tenant service is specific to EnMasse, it still uses quite a lot of the base functionality coming from Hono. And we wanted to re-use all of that, as we did with Spring Boot. So this wasn’t one of those nice “greenfield” projects, where you can start from scratch, with a nice and clean “Hello World”. This is code is embedded in two bigger projects, passes system tests, and has a history of its own.

So, change as little as possible and get out as much as we can. What else could it be?! And just to understand from where we started, here is a screenshot of the metrics of the tenant service instance on my test cluster:

Screenshot of original resource consumption.
Metrics for the original Spring Boot application

Around 200MiB of RAM, a little bit of CPU, and not much to do. As mentioned before, the tenant service only gets queries to verify the existence of a tenant, and the system will cache this information for a bit.

Step #1 – Migrate to Quarkus

To use Quarkus, we started to tweak our existing project, to adopt the different APIs that Quarkus uses for dependency injection and configuration. And to be fair, that mostly meant saying good-bye to Spring Boot specific APIs, going for something more open. Dependency Injection in Quarkus comes in the form of CDI. And Quarkus’ configuration is based on Eclipse MicroProfile Config. In a way, we didn’t migrate to Quarkus, but away from Spring Boot specific APIs.

First steps

Starting with adding the Quarkus Maven plugin and some basic dependencies to our Maven build, and off we go.

And while replacing dependency inject was a rather smooth process, the configuration part was a bit more tricky. Both Hono and Microprofile Config have a rather opinionated view on the configuration. Which made it problematic to enhance the Hono configuration in the way that Microprofile was happy. So for the first iteration, we ended up wrapping the Hono configuration classes to make them play nice with Microprofile. However, this is something that we intend to improve in Hono in the future.

Packaging the JAR into a container was no different than with the existing version. We only had to adapt the EnMasse operator to provide application arguments in the form Quarkus expected them.

First results

From a user perspective, nothing has changed. The tenant service still works the way it is expected to work and provides all the APIs as it did before. Just running with the Quarkus runtime, and the same JVM as before:

Screenshot of resource consumption with Quarkus in JVM mode.
Metrics after the conversion to Quarkus, in JVM mode

We can directly see a drop of 50MiB from 200MiB to 150MiB of RAM, that isn’t bad. CPU isn’t really different, though. There also is a slight improvement of the startup time, from ~2.5 seconds down to ~2 seconds. But that isn’t a real game-changer, I would say. Considering that ~2.5 seconds startup time, for a Spring Boot application, is actually not too bad, other services take much longer.

Step #2 – The native image

Everyone wants to do Java “native compilation”. I guess the expectation is that native compilation makes everything go much faster. There are different tests by different people, comparing native compilation and JVM mode, and the outcomes vary a lot. I don’t think that “native images” are a silver bullet to performance issues, but still, we have been curious to give it a try and see what happens.

Native image with Quarkus

Enabling native image mode in Quarkus is trivial. You need to add a Maven profile, set a few properties and you have native image generation enabled. With setting a single property in the Maven POM file, you can also instruct the Quarkus plugin to perform the native compilation step in a container. With that, you don’t need to worry about the GraalVM installation on your local machine.

Native image generation can be tricky, we knew that. However, we didn’t expect this to be as complex as being “Step #2”. In a nutshell, creating a native image compiles your code to CPU instruction, rather than JVM bytecode. In order to do that, it traces the call graph, and it fails to do so when it comes to reflection in Java. GraalVM supports reflection, but you need to provide the information about types, classes, and methods that want to participate in the reflection system, from the outside. Luckily Quarkus provides tooling to generate this information during the build. Quarkus knows about constructs like de-serialization in Jackson and can generate the required information for GraalVM to compile this correctly.

However, the magic only works in areas that Quarkus is aware of. So we did run into some weird issues, strange behavior that was hard to track down. Things that worked in JVM mode all of a sudden were broken in native image mode. Not all the hints are in the documentation. And we also didn’t read (or understand) all of the hints that are there. It takes a bit of time to learn, and with a lot of help from some colleagues (many thanks to Georgios, Martin, and of course Dejan for all the support), we got it running.

What is the benefit?

After all the struggle, what did it give us?

Screenshot of resource consumption with Quarkus in native image mode.
Metrics when running as native image Quarkus application

So, we are down another 50MiB of RAM. Starting from ~200MiB, down to ~100MiB. That is only half the RAM! Also, this time, we see a reduction in CPU load. While in JVM mode (both Quarkus and Spring Boot), the CPU load was around 2 millicores, now the CPU is always below that, even during application startup. Startup time is down from ~2.5 seconds with Spring Boot, to ~2 seconds with Quarkus in JVM mode, to ~0.4 seconds for Quarkus in native image mode. Definitely an improvement, but still, neither of those times is really bad.

Pros and cons of Quarkus

Switching to Quarkus was no problem at all. We found a few areas in the Hono configuration classes to improve. But in the end, we can keep the original Spring Boot setup and have Quarkus at the same time. Possibly other Microprofile compatible frameworks as well, though we didn’t test that. Everything worked as before, just using less memory. And except for the configuration classes, we could pretty much keep the whole application as it was.

Native image generation was more complex than expected. However, we also saw some real benefits. And while we didn’t do any performance tests on that, here is a thought: if the service has the same performance as before, the fact that it requires only half the of memory, and half the CPU cycles, this allows us to run twice the amount of instances now. Doubling throughput, as we can scale horizontally. I am really looking forward to another scale test since we did do all other kinds of optimizations as well.

You should also consider that the process of building a native image takes quite an amount of time. For this, rather simple service, it takes around 3 minutes on an above-than-average machine, just to build the native image. I did notice some decent improvement when trying out GraalVM 20.0 over 19.3, so I would expect some more improvements on the toolchain over time. Things like hot code replacement while debugging, are things that are not possible with the native image profile though. It is a different workflow, and that may take a bit to adapt. However, you don’t need to commit to either way. You can still have both at the same time. You can work with JVM mode and the Quarkus development mode, and then enable the native image profile, whenever you are ready.

Taking a look at the size of the container images, I noticed that the native image isn’t smaller (~85 MiB), compared to the uber-JAR file (~45 MiB). Then again, our “java base” image alone is around ~435 MiB. And it only adds the JVM on top of the Fedora minimal image. As you don’t need the JVM when you have the native image, you can go directly with the Fedora minimal image, which is around ~165 MiB, and end up with a much smaller overall image.

Conclusion

Switching our existing Java project to Quarkus wasn’t a big deal. It required some changes, yes. But those changes also mean, using some more open APIs, governed by the Eclipse Foundation’s development process, compared to using Spring Boot specific APIs. And while you can still use Spring Boot, changing the configuration to Eclipse MicroProfile opens up other possibilities as well. Not only Quarkus.

Just by taking a quick look at the numbers, comparing the figures from Spring Boot to Quarkus with native image compilation: RAM consumption was down to 50% of the original, CPU usage also was down to at least 50% of original usage, and the container image shrank to ~50% of the original size. And as mentioned in the beginning, we have been using Vert.x for all the core processing. Users that make use of the other Spring components should see more considerable improvement.

Going forward, I hope we can bring the changes we made to the next versions of EnMasse and Eclipse Hono. There is a real benefit here, and it provides you with some awesome additional choices. And in case you don’t like to choose, the EnMasse operator has some reasonable defaults for you 😉


Also see

This work is based on the work of others. Many thanks to:

The post Quarkus – Supersonic Subatomic IoT appeared first on ctron's blog.


by Jens Reimann at June 30, 2020 03:22 PM

Updates to the Eclipse IP Due Diligence Process

by waynebeaton at June 25, 2020 07:23 PM

In October 2019, The Eclipse Foundation’s Board of Directors approved an update to the IP Policy that introduces several significant changes in our IP due diligence process. I’ve just pushed out an update to the Intellectual Property section in the Eclipse Foundation Project Handbook.

I’ll apologize in advance that the updates are still a little rough and require some refinements. Like the rest of the handbook, we continually revise and rework the content based on your feedback.

Here’s a quick summary of the most significant changes.

License certification only for third-party content. This change removes the requirement to perform deep copyright, provenance and scanning of anomalies for third-party content unless it is being modified and/or if there are special considerations regarding the content. Instead, the focus for third-party content is on license compatibility only, which had previously been referred to as Type A due diligence.

Leverage other sources of license information for third-party content. With this change to license certification only for third-party content, we are able to leverage existing sources of information license information. That is, the requirement that the Eclipse IP Team personally review every bit of third-party content has been removed and we can now leverage other trusted sources.

ClearlyDefined is a trusted source of license information. We currently have two trusted sources of license information: The Eclipse Foundation’s IPZilla and ClearlyDefined. The IPZilla database has been painstakingly built over most of the lifespan of the Eclipse Foundation; it contains a vast wealth of deeply vetted information about many versions of many third-party libraries. ClearlyDefined is an OSI project that combines automated harvesting of software repositories and curation by trusted members of the community to produce a massive database of license (and other) information about content.

Piggyback CQs are no longer required. CQs had previously been used for tracking both the vetting process and the use of third-party content. With the changes, we are no longer required track the use of third-party content using CQs, so piggyback CQs are no longer necessary.

Parallel IP is used in all cases. Previously, our so-called Parallel IP process, the means by which project teams could leverage content during development while the IP Team completed their due diligence review was available only to projects in the incubation phase and only for content with specific conditions. This is no longer the case: full vetting is now always applied in parallel in all cases.

CQs are not required for third-party content in all cases. In the case of third-party content due diligence, CQs are now only used to track the vetting process.

CQs are no longer required before third-party content is introduced. Previously, the IP Policy required that all third-party content must be vetted by the Eclipse IP Team before it can be used by an Eclipse Project. The IP Policy updates turn this around. Eclipse project teams may now introduce new third-party content during a development cycle without first checking with the IP Team. That is, a project team may commit build scripts, code references, etc. to third-party content to their source code repository without first creating a CQ to request IP Team review and approval of the third-party content. At least during the development period between releases, the onus is on the project team to—​with reasonable confidence—​ensure any third-party content that they introduce is license compatible with the project’s license. Before any content may be included in any formal release the project team must engage in the due diligence process to validate that the third-party content licenses are compatible with the project license.

History may be retained when an existing project moves to the Eclipse Foundation. We had previously required that the commit history for a project moving to the Eclipse Foundation be squashed and that the initial contribution be the very first commit in the repository. This is no longer the case; existing projects are now encouraged (but not required) to retain their commit history. The initial contribution must still be provided to the IP Team via CQ as a snapshot of the HEAD state of the existing repository (if any).

The due diligence process for project content is unchanged.

If you notice anything that looks particularly wrong or troubling, please either open a bug report, or send a note to EMO.


by waynebeaton at June 25, 2020 07:23 PM

Eclipse JustJ

by Ed Merks (noreply@blogger.com) at June 25, 2020 08:18 AM

I've recently completed the initial support for provisioning the new Eclipse JustJ project, complete with a logo for it.


I've learned several new technologies and honed existing technology skills to make this happen. For example, I've previously used Inkscape to create nicer images for Oomph; a *.png with alpha is much better than a *.gif with a transparent pixel, particularly with the vogue, dark-theme fashion trend, which for old people like me feels more like the old days of CRT monitors than something modern, but hey, to each their own. In any case, a *.svg is cool, definitely looks great at every resolution, and can easily be rendered to a *.png.

By the way, did you know that artwork derivative of  Eclipse artwork requires special approval? Previously the Eclipse Board of Directors had to review and approve such logos, but now our beloved, supreme leader, Mike Milinkovich, is empowered to do that personally.

Getting to the point where we can redistribute JREs at Eclipse has been a long and winding road.  This of course required Board approval and your elected Committer Representatives helped push that to fruition last year.  Speaking of which, now there is an exciting late-breaking development: the move of AdoptOpenJDK to Eclipse Adoptium.  This will be an important source JREs for JustJ!

One of the primary goals of JustJ is to provide JREs via p2 update sites such that a product build can easily incorporate a JRE into the product. With that in place, the product runs out-of-the-box regardless of the JRE installed on the end-user's computer, which is particularly useful for products that are not Java-centric where the end-user doesn't care about the fact that Eclipse is implemented using Java.  This will also enable the Eclipse Installer to run out-of-the-box and will enable the installer to create an installation that, at the user's discretion, uses a JRE provided by Eclipse. In all cases, this includes the ability to update the installation's embedded JRE as new ones are released.

The first stage is to build a JRE from a JDK using jlink.  This must run natively on the JDK's actual supported operating system and hardware architecture.  Of course we want to automate this step, and all the steps involved in producing a p2 repository populated with JREs.  This is where I had to learn about Jenkins pipeline scripts.  I'm particularly grateful to Mikaël Barbero for helping me get started with a simple example.  Now I am a pipeline junkie, and of course I had to learn Groovy as well.

In the initial stage, we generate the JREs themselves, and that involves using shell scripts effectively.  I'm not a big fan of shell scripts, but they're a necessary evil.  I authored a single script that produces JREs on all the supported operating systems; one that I can run locally on Windows and on my two virtual boxes as well. The pipeline itself needs to run certain stages on specific agents such that their steps are performed on the appropriate operating system and hardware.  I'm grate to Robert Hilbrich of DLR for supporting JustJ's builds with their organization's resource packs!  He's also been kind enough to be one of our first test guinea pigs building a product with a JustJ JRE.  The initial stage produces a set of JREs.


In the next stage, JREs need to be wrapped into plugins and features to produce a p2 repository via a Maven/Tycho build.  This is a huge amount of boiler plate scaffolding that is error-prone to author and challenging to maintain, especially when providing multiple JRE flavors.  So of course we want to automate the generation of this scaffolding as well.  Naturally if we're going to generate something, we need a model to capture the boiled-down essence of what needs to be generated.  So I whipped together an EMF model and used JET templates to sketch out the scaffolding. With the super cool JET Editor, these are really easy to author and maintain.  This stage is described in the documentation and produces a p2 update site.  The sites are automatically maintained and the index pages are automatically generated.

To author nice documentation I had to learn PHP much better.  It's really quite cool and very powerful, particularly for producing pages with dynamic content.  For example, I used it to implement more flexible browsing support of download.eclipse.org so that one can really see all the files present, even when there is an index.html or index.php in the folder.  In any case, there is now lots of documentation for JustJ to describe everything in detail, and it was authored with the help of PHP scaffolding.

Last but not least, there is an Oomph setup to automate the provisioning of a full development environment along with a tutorial to describe in detail everything in that workspace.  There's no excuse not to contribute.  While authoring this tutorial, I found that creating nice, appropriately-clipped screen captures is super annoying and very time consuming, so I dropped a little goodie into Oomph to make that easier.   You might want to try it. Just add "-Dorg.eclipse.oomph.ui.screenshot=<some-folder-location>" to your eclipse.ini to enable it.  Then, if you hit Ctrl twice quickly, screen captures will be produced immediately based on where your application currently has focus.  If you hit Shift twice quickly, screen captures will be produced after a short delay.  This allows you to bring up a menu from the menu bar, from a toolbar button, or a context menu, and capture that menu.  In all cases, the captures include the "simulated" mouse cursor and starts with the "focus", expanding outward to the full enclosing window.

The bottom line, JustJ generates everything given just a set of URLs to JDKs as input, and it maintains everything automatically.  It even provides an example of how to build a product with an embedded JRE to get you started quickly.  And thanks to some test guinea pigs, we know it really works as advertised.


On the personal front, during this time period, I finished my move to Switzerland.  Getting up early here is a feast for the eyes! The movers were scurrying around my apartment the same days as the 2020-06 release, which was also the same day as one of the Eclipse Board meetings.  That was a little too much to juggle at once!

At this point, I can make anything work and I can make anything that already works work even better. Need help with something?  I'm easy to find...

by Ed Merks (noreply@blogger.com) at June 25, 2020 08:18 AM

Clean Sheet Service Update (0.8)

by Frank Appel at May 23, 2020 09:25 AM

Written by Frank Appel

Thanks to a community contribution we’re able to announce another Clean Sheet Service Update (0.8).

The Clean Sheet Eclipse Design

In case you've missed out on the topic and you are wondering what I'm talking about, here is a screenshot of my real world setup using the Clean Sheet theme (click on the image to enlarge). Eclipse IDE Look and Feel: Clean Sheet Screenshot For more information please refer to the features landing page at http://fappel.github.io/xiliary/clean-sheet.html, read the introductory Clean Sheet feature description blog post, and check out the New & Noteworthy page.

 

Clean Sheet Service Update (0.8)

This service update fixes a rendering issue of ruler numbers. Kudos to Pierre-Yves B. for contributing the necessary fixes. Please refer to the issue #87 for more details.

Clean Sheet Installation

Drag the 'Install' link below to your running Eclipse instance

Drag to your running Eclipse* workspace. *Requires Eclipse Marketplace Client

or

Select Help > Install New Software.../Check for Updates.
P2 repository software site: @ http://fappel.github.io/xiliary/
Feature: Code Affine Theme

After feature installation and workbench restart select the ‘Clean Sheet’ theme:
Preferences: General > Appearance > Theme: Clean Sheet

 

On a Final Note, …

Of course, it’s interesting to hear suggestions or find out about potential issues that need to be resolved. Feel free to use the Xiliary Issue Tracker or the comment section below for reporting.

I’d like to thank all the Clean Sheet adopters for the support! Have fun with the latest update :-)

The post Clean Sheet Service Update (0.8) appeared first on Code Affine.


by Frank Appel at May 23, 2020 09:25 AM

Clean Sheet Service Update (0.7)

by Frank Appel at April 24, 2020 08:49 AM

Written by Frank Appel

It’s been a while, but today we’re happy to announce a Clean Sheet Service Update (0.7).

The Clean Sheet Eclipse Design

In case you've missed out on the topic and you are wondering what I'm talking about, here is a screenshot of my real world setup using the Clean Sheet theme (click on the image to enlarge). Eclipse IDE Look and Feel: Clean Sheet Screenshot For more information please refer to the features landing page at http://fappel.github.io/xiliary/clean-sheet.html, read the introductory Clean Sheet feature description blog post, and check out the New & Noteworthy page.

 

Clean Sheet Service Update (0.7)

This service update provides the long overdue JRE 11 compatibility on windows platforms. Kudos to Pierre-Yves B. for contributing the necessary fixes. Please refer to the issues #88 and #90 for more details.

Clean Sheet Installation

Drag the 'Install' link below to your running Eclipse instance

Drag to your running Eclipse* workspace. *Requires Eclipse Marketplace Client

or

Select Help > Install New Software.../Check for Updates.
P2 repository software site: @ http://fappel.github.io/xiliary/
Feature: Code Affine Theme

After feature installation and workbench restart select the ‘Clean Sheet’ theme:
Preferences: General > Appearance > Theme: Clean Sheet

 

On a Final Note, …

Of course, it’s interesting to hear suggestions or find out about potential issues that need to be resolved. Feel free to use the Xiliary Issue Tracker or the comment section below for reporting.

I’d like to thank all the Clean Sheet adopters for the support! Have fun with the latest update :-)

The post Clean Sheet Service Update (0.7) appeared first on Code Affine.


by Frank Appel at April 24, 2020 08:49 AM

Using the remote OSGi console with Equinox

by Mat Booth at April 23, 2020 02:00 PM

You may be familiar with the OSGi shell you get when you pass the "-console" option to Equinox on the command line. Did you know you can also use this console over Telnet sessions or SSH sessions? This article shows you the bare minimum needed to do so.


by Mat Booth at April 23, 2020 02:00 PM

EclipseCon 2020 CFP is Open

April 16, 2020 08:30 PM

If you are interested in speaking, our call for proposals is now open. Please visit the CFP page for information on how to submit your talk.

April 16, 2020 08:30 PM

Add Your Voice to the 2020 Jakarta EE Developer Survey

April 07, 2020 01:00 PM

Our third annual Jakarta EE Developer Survey is now open and I encourage everyone to take a few minutes and complete the survey before the April 30 deadline.

April 07, 2020 01:00 PM

Eclipse Oomph: Suppress Welcome Page

by kthoms at March 19, 2020 04:37 PM

I am frequently spawning Eclipse workspaces with Oomph setups and the first action I do when a new workspace is provisioned is to close Eclipse’s welcome page. So I wanted to suppress that for a current project setup. So I started searching where Eclipse stores the preference that disables the intro page. The location of that preference is within the workspace directory at

.metadata/.plugins/org.eclipse.core.runtime/.settings/org.eclipse.ui.prefs

The content of the preference file is

eclipse.preferences.version=1
showIntro=false

So to make Oomph create the preference file before the workspace is started the first time use a Resource Creation task and set the Target URL

${workspace.location|uri}/.metadata/.plugins/org.eclipse.core.runtime/.settings/org.eclipse.ui.prefs

Then put the above mentioned preference content as Content value.


by kthoms at March 19, 2020 04:37 PM

MPS’ Quest of the Holy GraalVM of Interpreters

by Niko Stotz at March 11, 2020 11:19 PM

A vision how to combine MPS and GraalVM

Way too long ago, I prototyped a way to use GraalVM and Truffle inside JetBrains MPS. I hope to pick up this work soon. In this article, I describe the grand picture of what might be possible with this combination.

Part I: Get it Working

Step 0: Teach Annotation Processors to MPS

Truffle uses Java Annotation Processors heavily. Unfortunately, MPS doesn’t support them during its internal Java compilation. The feature request doesn’t show any activity.

So, we have to do it ourselves. A little less time ago, I started with an alternative Java Facet to include Annotation Processors. I just pushed my work-in-progress state from 2018. As far as I remember, there were no fundamental problems with the approach.

Optional Step 1: Teach Truffle Structured Sources

For Truffle, all executed programs stem from a Source. However, this Source can only provide Bytes or Characters. In our case, we want to provide the input model. The prototype just put the Node id of the input model as a String into the Source; later steps resolved the id against MPS API. This approach works and is acceptable; directly passing the input node as object would be much nicer.

Step 2: Implement Truffle Annotations as MPS Language

We have to provide all additional hints as Annotations to Truffle. They are complex enough, so we want to leverage MPS’ language features to directly represent all Truffle concepts.

This might be a simple one-to-one representation of Java Annotations as MPS Concepts, but I’d guess we can add some more semantics and checks. Such feedback within MPS should simplify the next steps: Annotation Processors (and thus, Truffle) have only limited options to report issues back to us.

We use this MPS language to implement the interpreter for our DSL. This results in a TruffleLanguage for our DSL.

Step 3: Start Truffle within MPS

At the time when I wrote the proof-of-concept, a TruffleLanguage had to be loaded at JVM startup. To my understanding, Truffle overcame this limitation. I haven’t looked into the current possibilities in detail yet.

I can imagine two ways to provide our DSL interpreter to the Truffle runtime:

  1. Always register MpsTruffleLanguage1, MpsTruffleLanguage2, etc. as placeholders. This would also work at JVM startup. If required, we can register additional placeholders with one JVM restart.
    All non-colliding DSL interpreters would be MpsTruffleLanguage1 from Truffle’s point of view. This works, as we know the MPS language for each input model, and can make sure Truffle uses the right evaluation for the node at hand. We might suffer a performance loss, as Truffle had to manage more evaluations.

    What are non-colliding interpreters? Assume we have a state machine DSL, an expression DSL, and a test DSL. The expression DSL is used within the state machines; we provide an interpreter for both of them.
    We provide two interpreters for the test DSL: One executes the test and checks the assertions, the other one only marks model nodes that are covered by the test.
    The state machine interpreter, the expression interpreter, and the first test interpreter are non-colliding, as they never want to execute on the same model node. All of them go to MpsTruffleLanguage1.
    The second test interpreter does collide, as it wants to do something with a node also covered by the other interpreters. We put it to MpsTruffleLanguage2.

  2. We register every DSL interpreter as a separate TruffleLanguage. Nice and clean one-to-one relation. In this scenario, we probably had to get Truffle Language Interop right. I have not yet investigated this topic.

Step 4: Translate Input Model to Truffle Nodes

A lot of Truffle’s magic stems from its AST representation. Thus, we need to translate our input model (a.k.a. DSL instance, a.k.a. program to execute) from MPS nodes into Truffle Nodes.

Ideally, the Truffle AST would dynamically adopt any changes of the input model — like hot code replacement in a debugger, except we don’t want to stop the running program. From Truffle’s point of view this shouldn’t be a problem: It rewrites the AST all the time anyway.

DclareForMPS seems a fitting technology. We define mapping rules from MPS node to Truffle Node. Dclare makes sure they are in sync, and input changes are propagated optimally. These rules could either be generic, or be generated from the interpreter definition.

We need to take care that Dclare doesn’t try to adapt the MPS nodes to Truffle’s optimizing AST changes (no back-propagation).

We require special handling for edge cases of MPS → Truffle change propagation, e.g. the user deletes the currently executed part of the program.

For memory optimization, we might translate only the entry nodes of our input model immediately. Instead of the actual child Truffle Nodes, we’d add special nodes that translate the next part of the AST.
Unloading the not required parts might be an issue. Also, on-demand processing seems to conflict with Dclare’s rule-based approach.

Part II: Adapt to MPS

Step 5: Re-create Interpreter Language

The MPS interpreter framework removes even more boilerplate from writing interpreters than Truffle. The same language concepts should be built again, as abstraction on top of the Truffle Annotation DSL. This would be a new language aspect.

Step 6: Migrate MPS Interpreter Framework

Once we had the Truffle-based interpreter language, we want to use it! Also, we don’t want to rewrite all our nice interpreters.

I think it’s feasible to automatically migrate at least large parts of the existing MPS interpreter framework to the new language. I would expect some manual adjustment, though. That’s the price we had to pay for two orders of magnitude performance improvement.

Step 7: Provide Plumbing for BaseLanguage, Checking Rules, Editors, and Tests

Using the interpreter should be as easy as possible. Thus, we have to provide the appropriate utilities:

  • Call the interpreter from any BaseLanguage code.
    We had to make sure we get language / model loading and dependencies right. This should be easier with Truffle than with the current interpreter, as most language dependencies are only required at interpreter build time.
  • Report interpreter results in Checking Rules.
    Creating warnings or errors based on the interpreter’s results is a standard use-case, and should be supported by dedicated language constructs.
  • Show interpreter results in an editor.
    As another standard use-case, we might want to show the interpreter’s results (or a derivative) inside an MPS editor. Especially for long-running or asynchronous calculations, getting this right is tricky. Dedicated editor extensions should take care of the details.
  • Run tests that involve the interpreter.
    Yet another standard use-case: our DSL defines both calculation rules and examples. We want to assure they are in sync, meaning executing the rules in our DSL interpreter and comparing the results with the examples. This must work both inside MPS, and in a headless build / CI test environment.

Step 8: Support Asynchronous Interpretation and/or Caching

The simple implementation of interpreter support accepts a language, parameters, and a program (a.k.a. input model), and blocks until the interpretation is complete.

This working mode is useful in various situations. However, we might want to run long-running interpretations in the background, and notify a callback once the computation is finished.

Example: An MPS editor uses an interpreter to color a rule red if it is not in accordance with a provided example. This interpretation result is very useful, even if it takes several seconds to calculate. However, we don’t want to block the editor (or even whole MPS) for that long.

Extending the example, we might also want to show an error on such a rule. The typesystem runs asynchronously anyways, so blocking is not an issue. However, we now run the same expensive interpretation twice. The interpreter support should provide configurable caching mechanisms to avoid such waste.

Both asynchronous interpretation and caching benefit from proper language extensions.

Step 9: Integrate with MPS Typesystem and Scoping

Truffle needs to know about our DSL’s types, e.g. for resolving overloaded functions or type casting. We already provide this information to the MPS typesystem. I didn’t look into the details yet; I’d expect we could generate at least part of the Truffle input from MPS’ type aspect.

Truffle requires scoping knowledge to store variables in the right stack frame (and possibly other things I don’t understand yet). I’d expect we could use the resolved references in our model as input to Truffle. I’m less optimistic to re-use MPS’ actual scoping system.

For both aspects, we can amend the missing information in the Interpreter Language, similar to the existing one.

Step 10: Support Interpreter Development

As DSL developers, we want to make sure we implemented our interpreter correctly. Thus, we write tests; they are similar to other tests involving the interpreter.

However, if they fail, we don’t want to debug the program expressed in our DSL, but our interpreter. For example, we might implement the interpreter for a switch-like construct, and had forgotten to handle an implicit default case.

Using a regular Java debugger (attached to our running MPS instance) has only limited use, as we had to debug through the highly optimized Truffle code. We cannot use Truffle’s debugging capabilities, as they work on the DSL.
There might be ways to attach a regular Java debugger running inside MPS in a different thread to its own JVM. Combining the direct debugger access with our knowledge of the interpreter’s structure, we might be able to provide sensible stepping through the interpreter to the DSL developer.

Simpler ways to support the developers might be providing traces through the interpreter, or ship test support where the DSL developer can assure specific evaluators were (not) executed.

Step 11: Create Language for Interop

Truffle provides a framework to describe any runtime in-memory data structure as Shape, and to convert them between languages. This should be a nice extension of MPS’ multi-language support into the runtime space, supported by an appropriate Meta-DSL (a.k.a. language aspect).

Part III: Leverage Programming Language Tooling

Step 12: Connect Truffle to MPS’ Debugger

MPS contains the standard interactive debugger inherited from IntelliJ platform.

Truffle exposes a standard interface for interactive debuggers of the interpreted input. It takes care of the heavy lifting from Truffle AST to MPS input node.

If we ran Truffle in a different thread than the MPS debugger, we should manage to connect both parts.

Step 13: Integrate Instrumentation

Truffle also exposes an instrumentation interface. We could provide standard instrumentation applications like “code” coverage (in our case: DSL node coverage) and tracing out-of-the-box.

One might think of nice visualizations:

  • Color node background based on coverage
  • Mark the currently executed part of the model
  • Project runtime values inline
  • Show traces in trace explorer

Other possible applications:

  • Snapshot mechanism for current interpreter state
  • Provide traces for offline debugging, and play them back

Part IV: Beyond MPS

Step 14: Serialize Truffle Nodes

If we could serialize Truffle Nodes (before any run-time optimization), we would have an MPS-independent representation of the executable DSL. Depending on the serialization format (implement Serializable, custom binary format, JSON, etc.), we could optimize for use-case, size, loading time, or other priorities.

Step 15: Execute DSL stand-alone without Generator

Assume an insurance calculation DSL.
Usually, we would implement

  • an interpreter to execute test cases within MPS,
  • a Generator to C to execute on the production server,
  • and a Generator to Java to provide an preview for the insurance agent.

With serialized Truffle Nodes, we need only one interpreter:

Part V: Crazy Ideas

Step 16: Step Back Debugger

By combining Instrumentation and debugger, it might be feasible to provide step-back debugging.

In the interpreter, we know the complete global state of the program, and can store deltas (to reduce memory usage). For quite some DSLs, this might be sufficient to store every intermediate state and thus arbitrary debug movement.

Step 17: Side Step Debugger

By stepping back through our execution and following different execution paths, we could explore alternate outcomes. The different execution path might stem from other input values, or hot code replacement.

Step 18: Explorative Simulations

If we had a side step debugger, nice support to project interpretation results, and a really fast interpreter, we could run explorative simulations on lots of different executions paths. This might enable legendary interactive development.


by Niko Stotz at March 11, 2020 11:19 PM

Postmortem - February 7 storage and authentication outage

by Denis Roy at February 20, 2020 04:12 PM

On Friday, February 7 2020, Eclipse.org suffered a severe service disruption to many of its web properties when our primary authentication server and file server suffered a hardware failure.

For 90 minutes, our main website, www.eclipse.org, was mostly available, as was our Bugzilla bug tracking tool, but logging in was not possible. Wiki, Eclipse Marketplace and other web properties were degraded. Git and Gerrit were both completely offline for 2 hours and 18 minutes. Authenticated access to Jiro -- our Jenkins+Kubernetes-based CI system, was not possible, and builds that relied on Git access failed during that time.

There was no data loss, but there were data inconsistencies. A dozen Git repositories and Gerrit code changes were in an inconsistent state due to replication schedules, but thanks to the distributed nature of Git, the code commits were still in local developer Git repositories, as well as on the failed server, which we were eventually able to revive (in an offline environment). Data inconsistencies were more severe in our LDAP accounts database, where dozens of users were unable to log in, and in some isolated cases, users reported that their account was reverted back to old data from years prior.

In hindsight, we feel this outage could have, and should have been avoided. We’ve identified many measures we must enact to prevent such unplanned outages in the future. Furthermore, our communication and incident handling processes proved to be flawed, and will be scrutinized and improved, to ensure our community is better informed during unplanned incidents.

Lastly, we’ve identified aging hardware and Single Points of Failure (SPoF) that must be addressed.

 

File server & authentication setup

At the center of the Eclipse infra is a pair of servers that handle 2 specific tasks:

  • Network Attached Storage (NAS) via NFS

  • User Authentication via OpenLDAP

The server pair consists of a primary system, which handles all the traffic, and a hot spare. Both servers are configured identically for production service, but the spare server sits idly and receives data periodically from the primary. This specific architecture was originally implemented in 2005, with periodical hardware upgrades over time.

 

Timeline of events

Friday Feb 7 - 12:33pm EST: Fred Gurr (Eclipse Foundation IT/Releng team) reports on the Foundation’s internal Slack channel that something is happening to the Infra. Denis observes many “Flaky” status reports on https://status.eclipse.org but is in transit and cannot investigate further. Webmaster Matt Ward investigates.

12:43pm: Matt confirms that our primary nfs/ldap server is not responding, and activates “Plan A: assess and fix”.

12:59pm: Denis reaches a computer and activates “Plan B: prepare for Failover” while Matt works on Plan A. The “Sorry, we are down” page is served for all Flaky services except www.eclipse.org, which continues to be served successfully by our nginx cache.

1:18pm: The standby server is ready to assume the “primary” role.

1:29pm: Matt makes the call for failover, as the severity of the hardware failure is not known, and not easily recoverable.

1:49pm: www.eclipse.org, Bugzilla, Marketplace, Wiki return to stable service on the new primary.

2:18pm: Git and Gerrit return to stable service.

2:42pm: Our Kubernetes/OpenShift cluster is updated to the latest patchlevel and all CI services restarted.

4:47pm: All legacy JIPP servers are restarted, and all other remaining services report functional.  At this time, we are not aware of any issues.

During the weekend, Matt continues to monitor the infra. Authentication issues crop up over the weekend, which are caused by duplicated accounts and are fixed by Matt.

Monday, 4:49am EST: Mikaël Barbero (Eclipse Foundation IT/Releng team) reports that there are more duplicate users in LDAP that cannot log into our systems. This is now a substantial issue. They are fixed systematically with an LDAP duplicate finder, but the process is very slow.

10:37am: First Foundation broadcast on the cross-project mailing list that there is an issue with authentication.

Tuesday, 9:51am: Denis blogs about the incident and posts a message to the eclipse.org-committers mailing list about the ongoing authentication issues. The message, however, is held for moderation and is not distributed until many hours later.

Later that day: Most duplicated accounts have been removed, and just about everything is stabilized. We do not yet understand the source of the duplicates.

Wednesday: duplicate removals continue, as well as investigation into the cause.

Thursday 9:52am: We file a dozen bugs against projects whose Git and Gerrit repos may be out of sync. Some projects had already re-pushed or rebased their missing code patches and resolved the issue as FIXED.

Friday, 2:58pm: All remaining duplicates are removed. Our LDAP database is fully cleaned. The failed server re-enters production as the hot standby - even though its hardware is not reliable. New hardware is sourced and ordered.

 

Hardware failure

The physical servers assuming our NAS/LDAP setup are server-class hardware, 2U chassis with redundant power supplies, ECC (error checking and correction) memory, RAID-5 disk arrays with a battery-backup RAID controller memory. Both primary and standby servers were put into production in 2011.

On February 7, the primary server experienced a kernel crash from the RAID controller module. The RAID controller detected an unrecoverable ECC memory error. The entire server became unresponsive.

As originally designed in 2005, periodical (batched) data updates from the primary to the hot spare were simple to set up and maintain. This method also had a distinct advantage over live replication: rapid recovery in case of erasure (accidental or malicious) or data tampering. Of course, this came at a cost of possible data loss. However, it was deemed that critical data (in our case, Source Code) susceptible to loss during the short time was also available on developer workstations.


Failover and return to stability

As the standby server was prepared for production service, the reasons for the crash on the primary server were investigated. We assessed the possibility of continuing service on the primary; that course of action would have provided the fastest recovery with the fewest surprises later on.

As the nature of the hardware failure remained unknown, failover was the only option. We confirmed that some data replication tasks had run less than one hour prior to failure, and all data replication was completed no later than 3 hours prior. IP addresses were updated, and one by one, services that depended on NFS and authentication were restarted to flush caches and minimize any potential for an inconsistent state.

At about 4:30pm, or four hours after the failure, both webmasters were confident that the failover was successful, and that very little dust would settle over the weekend.
 

Authentication issues

Throughout the weekend, we had a few reports of authentication issues -- which were expected, since we failed over to a standby authentication source that was at least 12 hours behind the primary. These issues were fixed as they were reported, and nothing seemed out of place.

On Monday morning, Feb 10th, the Foundation’s Releng team reported that several committers had authentication issues to the CI systems. We then suspected that something else was at play with our authentication database, but it was not clear to us what had happened, or what the magnitude was. The common issue was duplicate accounts -- some users had an account in two separate containers simultaneously, which prevented users from being able to authenticate. These duplicates were removed as rapidly as we could, and we wrote scripts to identify old duplicates and purge them -- but with >450,000 accounts, it was time-consuming.

At that time, we got so wrapped up in trying to understand and resolve the issue that we completely underestimated its impact on the community, and we were absolutely silent about it.

 

Problem solved

On Friday afternoon, February 14, we were able to finally clean up all the duplicate accounts and understand why they existed in the first place.

Prior to December, 2011, our LDAP database only contained committer accounts. In December 2011, we imported all the non-committer accounts from Bugzilla and Wiki into an LDAP container we named “Community”. This allowed us to centralize authentication around a single source of truth: LDAP.

All new accounts were, and are created in the Community container, and are moved into the Committer container if/when they became an Eclipse Committer.

Our primary->secondary LDAP sync mechanism was altered, at that time, to sync the Community container as well -- but it was purely additive. Once you had an account in Community, it was there for life on the standby server, even if you became a committer later on. Or if you’d ever change your email address. This was the source of the duplicate accounts on the standby server.

A new server pair has been ordered on February 14, 2020 . These servers will be put into production service as soon as possible, and the old hardware will be recommissioned to clustered service. With these new machines, we believe our existing architecture and configuration can continue to serve us well over the coming months and years.

 

Take-aways and proposed improvements

Although the outage didn’t last incredibly long (2 hours from failure to the beginning of restored service), we feel it shouldn’t have occurred in the first place. Furthermore, we’ve identified key areas where our processes can be improved - notably, in how we communicate with you.

Here are the action items we’re committed to implementing in the near term, to improve our handling of such incidents:

  • Communication: Improved Service Status page.  https://status.eclipse.org gives a picture of what’s going on, but with an improved service, we can communicate the nature of outages, the impact, and estimated time until service is restored.

  • Communication: Internally, we will improve communication within our team and establish a maintenance log, whereby members of the team can discover the work that has been done.

  • Staffing: we will explore the possibility of an additional IT hire, thus enhancing our collective skillset, and enabling more overall time on the quality and reliability of the infra.

  • Aging Hardware: we will put top-priority on resolving aging SPoF, and be more strict about not running hardware devices past their reasonable life expectancy.

    • In the longer term, we will continue our investment in replacing SPoF with more robust technologies. This applies to authentication, storage, databases and networking.

  • Process and procedures: we will allocate more time to testing our disaster recovery and business continuity procedures. Such tests would likely have revealed the LDAP sync bug.

We believe that these steps will significantly reduce unplanned outages such as the one that occured on February 7. They will also help us ensure that, should a failure occur, we recover and return to a state of stability more rapidly. Finally, they will help you understand what is happening, and what the timelines to restore service are, so that you can plan your work tasks and remain productive.


by Denis Roy at February 20, 2020 04:12 PM

Interfacing null-safe code with legacy code

by Stephan Herrmann at February 06, 2020 07:38 PM

When you adopt null annotations like these, your ultimate hope is that the compiler will tell you about every possible NullPointerException (NPE) in your program (except for tricks like reflection or bytecode weaving etc.). Hallelujah.

Unfortunately, most of us use libraries which don’t have the blessing of annotation based null analysis, simply because those are not annotated appropriately (neither in source nor using external annotations). Let’s for now call such code: “legacy”.

In this post I will walk through the options to warn you about the risks incurred by legacy code. The general theme will be:

Can we assert that no NPE will happen in null-checked code?

I.e., if your code consistently uses null annotations, and has passed analysis without warnings, can we be sure that NPEs can only ever be thrown in the legacy part of the code? (NPEs inside legacy code are still to be expected, there’s nothing we can change about that).

Using existing Eclipse versions, one category of problems would still go undetected whereby null-checked code could still throw NPE. This has been recently fixed bug.

Simple data flows

Let’s start with simple data flows, e.g., when your program obtains a value from legacy code, like this:

NullFrom_getProperty

You shouldn’t be surprised, the javadoc even says: “The method returns null if the property is not found.” While the compiler doesn’t read javadoc, it can recognize that a value with unspecified nullness flows into a variable with a non-null type. Hence the warning:

Null type safety (type annotations): The expression of type ‘String’ needs unchecked conversion to conform to ‘@NonNull String’

As we can see, the compiler warned us, so we are urged to fix the problem in our code. Conversely, if we pass any value into a legacy API, all bad that can happen would happen inside legacy code, so nothing to be done for our mentioned goal.

The underlying rule is: legacy values can be safely assigned to nullable variables, but not to non-null variables (example Properties.getProperty()). On the other hand, any value can be assigned to a legacy variable (or method argument).

Put differently: values flowing from null-checked to legacy pose no problems, whereas values flowing the opposite direction must be assumed to be nullable, to avoid problems in null-checked code.

Enter generics

Here be dragons.

As a minimum requirement we now need null annotations with target TYPE_USE (“type annotations”), but we have this since 2014. Good.

NullFromLegacyList

Here we obtain a List<String> value from a Legacy class, where indeed the list names is non-null (as can be seen by successful output from names.size()). Still things are going south in our code, because the list contained an unexpected null element.

To protect us from this problem, I marked the entire class as @NonNullByDefault, which causes the type of the variable names to become List<@NonNull String>. Now the compiler can again warn us about an unsafe assignment:

Null type safety (type annotations): The expression of type ‘List<String>’ needs unchecked conversion to conform to ‘List<@NonNull String>’

This captures the situation, where a null value is passed from legacy to null-checked code, which is wrapped in a non-null container value (the list).

Here’s a tricky question:

Is it safe to pass a null-checked value of a parameterized type into legacy code?

In the case of simple values, we saw no problem, but the following example tells us otherwise once generics are involved:
NullIntoNonNullList

Again we have a list of type List<@NonNull String>, so dereferencing values obtained from that list should never throw NPE. Unfortunately, the legacy method printNames() succeeded to break our contract by inserting null into the list, resulting in yet another NPE thrown in null-checked code.

To describe this situation it helps to draw boundaries not only between null-checked and legacy code, but also to draw a boundary around the null-checked value of parameterized type List<@NonNull String>. That boundary is breached when we pass this value into legacy code, because that code will only see List<String> and happily invoke add(null).

This is were I recently invented a new diagnostic message:

Unsafe null type conversion (type annotations): The value of type ‘List<@NonNull String>’ is made accessible using the less-annotated type ‘List<String>’

By passing names into legacy code, we enable a hidden data flow in the opposite direction. In the general case, this introduces the risk of NPE in otherwise null-checked code. Always?

Wildcards

Java would be a much simpler language without wildcards, but a closer look reveals that wildcards actually don’t only help for type safety but also for null-safety. How so?

If the legacy method were written using a wildcard, it would not be (easily) possible to sneak in a null value, here are two attempts:
SneakAttempts

The first attempt is an outright Java type error. The second triggers a warning from Eclipse, despite the lack of null annotations:

Null type mismatch (type annotations): ‘null’ is not compatible to the free type variable ‘?’

Of course, compiling the legacy class without null-checking would still bypass our detection, but chances are already better.

If we add an upper bound to the wildcard, like in List<? extends CharSequence>, not much is changed. A lower bound, however, is an invitation for the legacy code to insert null at whim: List<? super String> will cause names.add() to accept any String, including the null value. That’s why Eclipse will also complain against lower bounded wildcards:

Unsafe null type conversion (type annotations): The value of type ‘List<@NonNull String>’ is made accessible using the less-annotated type ‘List<? super String>’

Comparing to raw types

It has been suggested to treat legacy (not null-annotated) types like raw types. Both are types with a part of the contract ignored, thereby causing risks for parts of the program that still rely on the contract.

Interestingly, raw types are more permissive in the parameterized-to-raw conversion. We are generally not protected against legacy code inserting an Integer into a List<String> when passed as a raw List.

More interestingly, using a raw type as a type argument produces an outright Java type error, so my final attempt at hacking the type system failed:

RawTypeArgument

Summary

We have seen several kinds of data flow with different risks:

  • Simple values flowing checked-to-legacy don’t cause any specific headache
  • Simple values flowing legacy-to-checked should be treated as nullable to avoid bad surprises. This is checked.
  • Values of parameterized type flowing legacy-to-checked must be handled with care at the receiving side. This is checked.
  • Values of parameterized type flowing checked-to-legacy add more risks, depending on:
    • nullness of the type argument (@Nullable type argument has no risk)
    • presence of wildcards, unbounded or lower-bounded.

Eclipse can detect all mentioned situations that would cause NPE to be thrown from null-checked code – the capstone to be released with Eclipse 2020-03, i.e., coming soon …


by Stephan Herrmann at February 06, 2020 07:38 PM

Eclipse and Handling Content Types on Linux

by Mat Booth at February 06, 2020 03:00 PM

Getting deep desktop integration on Linux.


by Mat Booth at February 06, 2020 03:00 PM

Remove SNAPSHOT and Qualifier in Maven/Tycho Builds

by Lorenzo Bettini at February 05, 2020 10:20 AM

Before releasing Maven artifacts, you remove the -SNAPSHOT from your POMs. If you develop Eclipse projects and build with Maven and Tycho, you have to keep the versions in the POMs and the versions in MANIFEST, feature.xml and other Eclipse project artifacts consistent. Typically when you release an Eclipse p2 site, you don’t remove the .qualifier in the versions and you will get Eclipse bundles and features versions automatically processed: the .qualifer is replaced with a timestamp. But if you want to release some Eclipse bundles also as Maven artifacts (e.g., to Maven central) you have to remove the -SNAPSHOT before deploying (or they will still be considered snapshots, of course 🙂 and you have to remove .qualifier in Eclipse bundles accordingly.

To do that, in an automatic way, you can use a combination of Maven plugins and of tycho-versions-plugin.

I’m going to show two different ways of doing that. The example used in this post can be found here: https://github.com/LorenzoBettini/tycho-set-version-example.

First method

The idea is to use the goal parse-version of the org.codehaus.mojo:build-helper-maven-plugin. This will store the parts of the current version in some properties (by default, parsedVersion.majorVersion, parsedVersion.minorVersion and parsedVersion.incrementalVersion).

Then, we can pass these properties appropriately to the goal set-version of the org.eclipse.tycho:tycho-versions-plugin.

This is the Maven command to run:

mvn \
  build-helper:parse-version org.eclipse.tycho:tycho-versions-plugin:set-version \
  -DnewVersion=\${parsedVersion.majorVersion}.\${parsedVersion.minorVersion}.\${parsedVersion.incrementalVersion}

The goal set-version of the Tycho plugin will take care of updating the versions (without the -SNAPSHOT and .qualifier) both in POMs and in Eclipse projects’ metadata.

Second method

Alternatively, we can use the goal set (with argument -DremoveSnapshot=true) of the org.codehaus.mojo:versions-maven-plugin. Then, we use the goal update-eclipse-metadata of the org.eclipse.tycho:tycho-versions-plugin, to update Eclipse projects’ versions according to the version in the POM.

This is the Maven command to run:

mvn \
  versions:set -DgenerateBackupPoms=false -DremoveSnapshot=true \
  org.eclipse.tycho:tycho-versions-plugin:update-eclipse-metadata

The first goal will change the versions in POMs while the second one will change the versions in Eclipse projects’ metadata.

Configuring the plugins

As usual, it’s best practice to configure the used plugins (in this case, their versions) in the pluginManagement section of your parent POM.

For example, in the parent POM of https://github.com/LorenzoBettini/tycho-set-version-example we have:

<build>
  <pluginManagement>
    <plugins>
      <plugin>
        <groupId>org.codehaus.mojo</groupId>
        <artifactId>build-helper-maven-plugin</artifactId>
        <version>3.0.0</version>
      </plugin>
      <plugin>
        <groupId>org.codehaus.mojo</groupId>
        <artifactId>versions-maven-plugin</artifactId>
        <version>2.7</version>
      </plugin>
      <plugin>
        <groupId>org.eclipse.tycho</groupId>
        <artifactId>tycho-versions-plugin</artifactId>
        <version>1.6.0</version>
...

 

Conclusions

In the end, choose the method you prefer. Please keep in mind that these goals are not meant to be used during a standard Maven lifecycle, that’s why we ran them explicitly.

Furthermore, the goal set of the org.codehaus.mojo:versions-maven-plugin might give you some headache if the structure of your Maven/Eclipse projects is quite different from the default one based on nested directories. In particular, if you have an aggregator project different from the parent project, you will have to pass additional arguments or set the versions in different commands (e.g., first on the parent, then on the other modules of the aggregator, etc.)


by Lorenzo Bettini at February 05, 2020 10:20 AM

JDT without Eclipse

January 16, 2020 11:00 PM

The JDT (Java Development Tools) is an important part of Eclipse IDE but it can also be used without Eclipse.

For example the Spring Tools 4, which is nowadays a cross-platform tool (Visual Studio Code, Eclipse IDE, …), is highly using the JDT behind the scene. If you would like to know more, I recommend you this podcast episode: Spring Tools lead Martin Lippert

A second known example is the Java Formatter that is also part of the JDT. Since a long time there are maven and gradle plugins that performs the same formatting as Eclipse IDE but as part of the build (often with the possibly to break the build when the code is wrongly formatted).

Reusing the JDT has been made easier since 2017 when it was decided to publish each release and its dependencies on maven central (with following groupId: org.eclipse.jdt, org.eclipse.platform). Stephan Herrmann did a lot of work to achieve this goal. I blogged about this: Use the Eclipse Java Development Tools in a Java SE application and I have pushed a simple example the Java Formatter is used in a simple main(String[]) method built by a classic minimal Maven project: java-formatter.

Workspace or not?

When using the JDT in an headless application, two cases needs to be distinguished:

  1. Some features (the parser, the formatter…) can be used in a simple Java main method.

  2. Other features (search index, AST rewriter…) require a workspace. This imply that the code run inside an OSGi runtime.

To illustrate this aspect, I took some of the examples provided by the site www.programcreek.com in the blog post series Eclipse JDT Tutorials and I adapted them so that each code snippet can be executed inside a JUnit test. This is the Programcreek examples project.

I have split the unit-tests into two projects:

  • programcreek-standalone for the one that do not require OSGi. The maven project is really simple (using the default convention everywhere)

  • programcreek-osgi for the one that must run inside an OSGi runtime. The bnd maven plugins are configured in the pom.xml to take care of the OSGi stuff.

If you run the test with Maven, it will work out-of-the box.

If you would like to run them inside an IDE, you should use one that starts OSGi when executing the tests (in the same way the maven build is doing it). To get a bnd aware IDE, you can use Eclipse IDE for Java Developers with the additional plugin Bndtools installed, but there are other possibilities.

Source code can be found on GitHub: programcreek-examples


January 16, 2020 11:00 PM

Oracle made me a Stackoverflow Guru

by Stephan Herrmann at January 16, 2020 06:40 PM

Just today Oracle helped me to become a “Guru” on Stackoverflow! How did they do it? By doing nothing.

In former times, I was periodically enraged, when Oracle didn’t pay attention to the feedback I was giving them during my work on ecj (the Eclipse Compiler for Java) – at least not the attention that I had hoped for (to be fair: there was a lot of good communication, too). At those times I had still hoped I could help make Java a language that is completely and unambiguously defined by specifications. Meanwhile I recognized that Java is at least three languages: the language defined by JLS etc., the language implemented by javac, and the language implemented by ecj (and no chance to make ecj to conform to both others). I realized that we were not done with Java 8 even 3 years after its release. Three more years later it’s still much the same.

So let’s move on, haven’t things improved in subsequent versions of Java? One of the key new rules in Java 9 is, that

“If [a qualified package name] does not name a package that is uniquely visible to the current module (§7.4.3), then a compile-time error occurs”.

Simple and unambiguous. That’s what compilers have to check.

Except: javac doesn’t check for uniqueness if one of the modules involved is the “unnamed module”.

In 2018 there was some confusion about this, and during discussion on stackoverflow I raised this issue to the jigsaw-dev mailing list. A bug was raised against javac, confirmed to be a bug by spec lead Alex Buckley. I summarized the situation in my answer on stackoverflow.

This bug could have been easily fixed in javac version 12, but wasn’t. Meanwhile upvotes on my answer on stackoverflow started coming in. The same for Java 13. The same for Java 14. And yet no visible activity on the javac bug. You need ecj to find if your program violates this rule of JLS.

Today the 40th upvote earned me the “Guru” tag on stackoverflow.

So, please Oracle, keep that bug unresolved, it will earn me a lot of reputation for a bright future – by doing: nothing 🙂


by Stephan Herrmann at January 16, 2020 06:40 PM

4 Years at The Linux Foundation

by Chris Aniszczyk at January 03, 2020 09:54 AM

Late last year marked the 4th year anniversary of the formation of the CNCF and me joining The Linux Foundation:

As we enter 2020, it’s amusing for me to reflect on my decision to join The Linux Foundation a little over 4 years ago when I was looking for something new to focus on. I spent about 5 years at Twitter which felt like an eternity (the average tenure for a silicon valley employee is under 2 years), focused on open source and enjoyed the startup life of going from a hundred or so engineers to a couple of thousand. I truly enjoyed the ride, it was a high impact experience where we were able to open source projects that changed the industry for the better: Bootstrap (changed front end development for the better), Twemoji (made emojis more open source friendly and embeddable), Mesos (pushed the state of art for open source infrastructure), co-founded TODO Group (pushed the state of corporate open source programs forward) and more!

When I was looking for change, I wanted to find an opportunity that could impact more than I could just do at one company. I had some offers from FAANG companies and amazing startups but eventually settled on the nonprofit Linux Foundation because I wanted to build an open source foundation from scratch, teach other companies about open source best practices and assumed non profit life would be a bit more relaxing than diving into a new company (I was wrong). Also, I was throughly convinced that an openly governed foundation pushing Kubernetes, container specifications and adjacent independent cloud native technologies would be the right model to move open infrastructure forward.

As we enter 2020, I realize that I’ve been with one organization for a long time and that puts me on edge as I enjoy challenges, chaos and dread anything that makes me comfortable or complacent. Also, I have a strong desire to focus on efforts that involve improving the state of security and privacy in a connected world, participatory democracy, climate change; also anything that pushes open source to new industries and geographies.

While I’m always happy to entertain opportunities that align to my goals, the one thing that I do enjoy at the LF is that I’ve had the ability to build a variety of new open source foundations improving industries and communities: CDF, GraphQL Foundation, Open Container Initiative (OCI), Presto Foundation, TODO Group, Urban Computing Foundation and more.

Anyways, thanks for reading and I look forward to another year of bringing open source practices to new industries and places, the world is better when we are collaborating openly.


by Chris Aniszczyk at January 03, 2020 09:54 AM

An update on Eclipse IoT Packages

by Jens Reimann at December 19, 2019 12:17 PM

A lot has happened, since I wrote last about the Eclipse IoT Packages project. We had some great discussions at EclipseCon Europe, and started to work together online, having new ideas in the progress. Right before the end of the year, I think it is a good time to give an update, and peek a bit into the future.

Homepage

One of the first things we wanted to get started, was a home for the content we plan on creating. An important piece of the puzzle is to explain to people, what we have in mind. Not only for people that want to try out the various Eclipse IoT projects, but also to possible contributors. And in the end, an important goal of the project is to attract interested parties. For consuming our ideas, or growing them even further.

Eclipse IoT Packages logo

So we now have a logo, a homepage, built using using templates in a continuous build system. We are in a position to start focusing on the actual content, and on the more tricky tasks and questions ahead. And should you want to create a PR for the homepage, you are more than welcome. There is also already some content, explaining the main goals, the way we want to move forward, and demo of a first package: “Package Zero”.

Community

While the homepage is a good entry point for people to learn about Eclipse IoT and packages, our GitHub repository is the home for the community. And having some great discussions on GitHub, quickly brought up the need for a community call and a more direct communication channel.

If you are interested in the project, come and join our bi-weekly community call. It is a quick, 30 minutes call at 16:00 CET, and open to everyone. Repeating every two weeks, starting 2019-12-02.

The URL to the call is: https://eclipse.zoom.us/j/317801130. You can also subscribe to the community calendar to get a reminder.

In between calls, we have a chat room eclipse/packages on Gitter.

Eclipse IoT Helm Chart Repository

One of the earliest discussion we had, was around the question of how and were we want to host the Helm charts. We would prefer not to author them ourselves, but let the projects contribute them. After all, the IoT packages project has the goal of enabling you to install a whole set of Eclipse IoT projects, with only a few commands. So the focus is on the integration, and the expert knowledge required for creating project Helm chart, is in the actual projects.

On the other side, having a one-stop shop, for getting your Eclipse IoT Helm charts, sounds pretty convenient. So why not host our own Helm chart repository?

Thanks to a company called Kiwigrid, who contributed a CI pipeline for validating charts, we could easily extend our existing homepage publishing job, to also publish Helm charts. As a first chart, we published the Eclipse Ditto chart. And, as expected with Helm, installing it is as easy as:

Of course having a single chart is only the first step. Publishing a single Helm charts isn’t that impressive. But getting an agreement on the community, getting the validation and publishing pipeline set up, attracting new contributors, that is definitely a big step in the right direction.

Outlook

I think that we now have a good foundation, for moving forward. We have a place called “home”, for documentation, code and community. And it looks like we have also been able to attract more people to the project.

While our first package, “Package Zero”, still isn’t complete, it should be pretty close. Creating a first, joint deployment of Hono and Ditto is our immediate focus. And we will continue to work towards a first release of “Package Zero”. Finding a better name is still an item on the list.

Having this foundation in place also means, that the time is right, for you to think about contributing your own Eclipse IoT Package. Contributions are always welcome.

The post An update on Eclipse IoT Packages appeared first on ctron's blog.


by Jens Reimann at December 19, 2019 12:17 PM

Eclipse m2e: How to use a WORKSPACE Maven installation

by kthoms at November 27, 2019 09:39 AM

Today a colleague of me asked me about the Maven Installations preference page in Eclipse. There is an entry WORKSPACE there, which is disabled and shows NOT AVAILABLE. He wanted to know how to enable a workspace installation of Maven.

Since we both did not find the documentation of the feature I digged into the m2e sources and found class MavenWorkspaceRuntime. The relevant snippets are the method getMavenDistribution() and the MAVEN_DISTRIBUTION constant:

private static final ArtifactKey MAVEN_DISTRIBUTION = new ArtifactKey(
      "org.apache.maven", "apache-maven", "[3.0,)", null); //$NON-NLS-1$ //$NON-NLS-2$ //$NON-NLS-3$

...

protected IMavenProjectFacade getMavenDistribution() {
  try {
    VersionRange range = VersionRange.createFromVersionSpec(getDistributionArtifactKey().getVersion());
    for(IMavenProjectFacade facade : projectManager.getProjects()) {
      ArtifactKey artifactKey = facade.getArtifactKey();
      if(getDistributionArtifactKey().getGroupId().equals(artifactKey.getGroupId()) //
          && getDistributionArtifactKey().getArtifactId().equals(artifactKey.getArtifactId())//
          && range.containsVersion(new DefaultArtifactVersion(artifactKey.getVersion()))) {
        return facade;
      }
    }
  } catch(InvalidVersionSpecificationException e) {
    // can't happen
  }
  return null;
}

From here you can see that m2e tries to look for workspace (Maven) projects and to find one the has the coordinates org.apache.maven:apache-maven:[3.0,).

So the answer how to enable a WORKSPACE Maven installation is: Import the project apache-maven into the workspace. And here is how to do it:

  1. Clone Apache Maven from https://github.com/apache/maven.git
  2. Optionally: check out a release tag
    git checkout maven-3.6.3
  3. Perform File / Import / Existing Maven Projects
  4. As Root Directory select the apache-maven subfolder in your Maven clone location

Now you will have the project that m2e searches for in your workspace:

And the Maven Installations preference page lets you now select this distribution:


by kthoms at November 27, 2019 09:39 AM

Eclipse startup up time improved

November 05, 2019 12:00 AM

I’m happy to report that the Eclipse SDK integration builds starts in less than 5 seconds (~4900 ms) on my machine into an empty workspace. IIRC this used to be around 9 seconds 2 years ago. 4.13 (which was already quite a bit improved used around 5800ms (6887ms with EGit and Marketplace). For recent improvements in this release see https://bugs.eclipse.org/bugs/show_bug.cgi?id=550136 Thanks to everyone who contributed.

November 05, 2019 12:00 AM

Setup a Github Triggered Build Machine for an Eclipse Project

by Jens v.P. (noreply@blogger.com) at October 29, 2019 12:55 PM

Disclaimer 1: This blog post literally is a "web log", i.e., it is my log about setting up a Jenkins machine with a job that is triggered on a Github pull request. A lot of parts have been described elsewhere, and I link to the sources I used here. I also know that nowadays (e.g., new Eclipse build infrastructure) you usually do that via docker -- but then you need to configure docker, in which

by Jens v.P. (noreply@blogger.com) at October 29, 2019 12:55 PM

LiClipse 6.0.0 released

by Fabio Zadrozny (noreply@blogger.com) at October 25, 2019 06:59 PM

LiClipse 6.0.0 is now out.

The main changes is that many dependencies have been updated:

- it's now based on Eclipse 4.13 (2019-09), which is a pretty nice upgrade (in my day-to-day use I find it appears smoother than previous versions, although I know this sounds pretty subjective).

- PyDev was updated to 7.4.0, so, Python 3.8 (which was just released) is now already supported.

Enjoy!

by Fabio Zadrozny (noreply@blogger.com) at October 25, 2019 06:59 PM

Qt World Summit 2019 Berlin – Secrets of Successful Mobile Business Apps

by ekkescorner at October 22, 2019 12:39 PM

Qt World Summit 2019

Meet me at Qt World Summit 2019 in Berlin

QtWS19_globe

I’ll speak about development of mobile business apps with

  • Qt 5.13.1+ (Qt Quick Controls 2)
    • Android
    • iOS
    • Windows 10

ekkes_session_qtws19

Qt World Summit 2019 Conference App

As a little appetizer I developed a conference app. HowTo download from Google Play Store or Apple and some more screenshots see here.

02_sessions_android

sources at GitHub

cu in Berlin


by ekkescorner at October 22, 2019 12:39 PM

A nicer icon for Quick Access / Find Actions

October 20, 2019 12:00 AM

Finally we use a decent icon for Quick Access / Find Actions. This is now a button in the toolbar which allows you to trigger arbitrary commands in the Eclipse IDE.

October 20, 2019 12:00 AM

A Tool for Jakarta EE Package Renaming in Binaries

by BJ Hargrave (noreply@blogger.com) at October 17, 2019 09:26 PM

In a previous post, I laid out my thinking on how to approach the package renaming problem which the Jakarta EE community now faces. Regardless of whether the community chooses big bang or incremental, there are still existing artifacts in the world using the Java EE package names that the community will need to use together with the new Jakarta EE package names.

Tools are always important to take the drudgery away from developers. So I have put together a tool prototype which can be used to transform binaries such as individual class files and complete JARs and WARs to rename uses of the Java EE package names to their new Jakarta EE package names.

The tools is rule driven which is nice since the Jakarta EE community still needs to define the actual package renames for Jakarta EE 9. The rules also allow the users to control which class files in a JAR/WAR are transformed. Different users may want different rules depending upon their specific needs. And the tool can be used for any package renaming challenge, not just the specific Jakarta EE package renames.

The tools provides an API allowing it to be embedded in a runtime to dynamically transform class files during the class loader definition process. The API also supports transforming JAR files. A CLI is also provided to allow use from the command line. Ultimately, the tool can be packaged as Gradle and Maven plugins to incorporate in a broader tool chain.

Given that the tool is prototype, and there is much work to be done in the Jakarta EE community regarding the package renames, I have started a list of TODOs in the project' issues for known work items.

Please try out the tool and let me know what you think. I am hoping that tooling such as this will ease the community cost of dealing with the package renames in Jakarta EE.

PS. Package renaming in source code is also something the community will need to deal with. But most IDEs are pretty good at this sort of thing, so I think there is probably sufficient tooling in existence for handling the package renames in source code.

by BJ Hargrave (noreply@blogger.com) at October 17, 2019 09:26 PM

Missing ECE already? Bring back a little of it - take the survey!

by Anonymous at October 15, 2019 09:22 PM

We hope you enjoyed the 2019 version of EclipseCon Europe and OSGi Community Event as much as we did.

Please share your thoughts and feedback by completing the short attendee survey. We read all responses, and we will use them to improve next year's event.

Speakers, please upload your slides to your session page. Attendees really appreciate this!


by Anonymous at October 15, 2019 09:22 PM

Back to the top